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Overview

• ILD, ITD differences and lateralization

• HRTF spectral changes for 3D imagery

• Binaural versus monaural influence of echoes

• Effects of reverberation on perception of the 
environmental context

• Cues to auditory distance

• Cognitive and multisensory cues
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Binaural hearing 
(localization; signal 
separation & 
detection): 

forming spatial 
auditory events from 
acoustical (bottom-up) 
and psychological 
(top-down) inputs

P
sychologically-driven

Figure adapted from Jens
Blauert, “Spatial Hearing.
The Pychophysics of Human Sound Localization.
Revised Edition. 1983, MIT Press.
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Model of the binaural hearing system

Filtering of acoustic signal
by pinnae, ear canal.

Filtering by inner ear; 
frequency-specific neuron
firings 

Physiological evaluation
of interaural timing and
level differences  
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Two important functions of the binaural hearing system

for recording engineers:

• Localization 

(lateral and 3-dimensional)

• Binaural masking:

Echo supression, room perception



• ILD (interaural level difference)
• ITD (interaural time difference)

“Duplex” theory of localization

Lateral localization of auditory images



• ILD (interaural level difference) 
caused by head shadow of 
wavelengths > 1.5 kHz

Lateral spatial image shift
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Perceptual decoding of spatial cues
in a cross-coincident microphone
recording is based on ILDs

rotation



• ITD (interaural time difference)

Lateral image shift



Lateralization demo. A simple time or level 
difference can make headphone images move 
from side to side inside the head.
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Elevation and front-back discrimination: 
HRTF, pinnae cues
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The cone of confusion causes reversals for virtual 
sources with identical or near-identical ITD or ILD
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example:
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Variation in HRTF magnitude with elevation at one azimuth

4. Audio example:

120 degree
azimuth: at

+36,

0 ,

-36 degrees 

elevation

Graphic by William L. Martens,
University of Aizu
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Perceptual errors with headphone 3-D sound 
include inside-the-head localization (solution: 
reverberation cues) and reversals (solution: head 
tracking)
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Echoes, reverberation and background 
sound: perception of the environmental 

context



Spatial hearing fundamentally involves perception of the 
location of a sound source at a point in space 
(azimuth, elevation, distance).

But a sound source 
simultaneously reveals 
information about its 
environmental context.

-reverberation
-image size & extent

Distance

Elevation

Image Size

Azimuth

Environmental Context

Listener



Effect of delay time for a single echo

0 0.6 1.5 40 10
Approximate delay time to left channel (msec) 

image shift image broadening echo 

Sound examples: 5. stereo echo- 6. monaural echo
Relative to the reference condition,
spatially separated echoes create spatial percepts;
non-spatially separated echoes create timbral effects



Direct sound

Early reflections

Late reflections (dense reverberation)
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7. Audio examples:
-direct sound
-direct w/ 1st, 2nd order ERs
-direct with full auralization
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Direct sound

Early reflections
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8. audio examples: normal and 0.25 speed impulse response



Echo thresholds
• Sensitivity can increase as much as 10 dB

if echoes occur at different locations
• Late reverberation can decrease sensitivity
• Sensitivity increases with increasing time delay



Although thresholds for 
reverberation are relatively 
low, background noise
(e.g., NC 35) can mask the 
reverberant decay.

Noise Criteria (NC) curves
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Distance perception: amplitude cues

• The inverse square law states that sound 
decays 6 decibels per doubling of distance in a 
reflection-free environment.
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9. sound example



Distance perception: amplitude cues

However, “half-as-loud” corresponds to a 10 dB 
reduction in level with distance 
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Distance perception: reverberant ratio cues
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An increase in reverberant level indicates
movement into the diffuse sound field



Concert Hall reverberation physical-
perceptual parameters

• Reverberance (reverberation time, strength)

• Apparent source width (ASW) (interaural cross-correlation)

• Envelopment (spatial diffusion of reflections from all 
around)

• Clarity (ratio of first 50-80 ms of early sound to late sound)

• Warmth (ratio of bass frequency RT to mid-band RT)



Cognitive cues; multisensory cues



Cognitive cues to distance perception

Shouting

Whispering



Auditory localization can be influenced or biased by
cognitive mapping



Influence of visual, vibratory cues

Explosions & crashes

Helicopter fly-overs



Summary

• ILD, ITD differences and lateralization

• HRTF spectral changes for 3D imagery

• Binaural versus monaural influence of echoes

• Effects of reverberation on perception of the 
environmental context

• Cues to auditory distance

• Cognitive and multisensory cues


