Overview of the Emergency and Abnormal Situations Project

Barbara Burian, Ph.D.
SJSUF / NASA Ames Research Center

Key Dismukes, Ph.D. and Immanuel Barshi, Ph.D.
NASA Ames Research Center

ALPA Operations Council
Washington, DC - August 20, 2003
The Challenge

Emergency and abnormal situations:
- are often time critical, complex, and/or ambiguous
- are high stress, high workload, and a great deal is at stake
- require exceptionally high levels of coordination inside and outside of the airplane

Emergency and abnormal procedures:
- are generally focused on aircraft systems rather than on the situation as a whole
- are practiced seldom (twice a year or less) and used rarely
- are often highly dependent on fragile cognitive processes
- when needed, are crucial and must be performed correctly
Industry Contacts and Consultants

<table>
<thead>
<tr>
<th>Manufacturers:</th>
<th>Boeing, Airbus Industries, BAE Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Agencies:</td>
<td>FAA, CAA (UK), ICAO</td>
</tr>
<tr>
<td>Unions and Trade Groups:</td>
<td>ALPA, APA, SWAPA, ATA</td>
</tr>
<tr>
<td>Accident Investigation Bodies:</td>
<td>NTSB, TSB of Canada</td>
</tr>
<tr>
<td>Airlines:</td>
<td>Southwest Airlines, United Airlines, Continental Airlines, American Airlines, Fed Ex, Aloha Airlines, Hawaiian Airlines, Air Canada, Cathay Pacific, Airborne Express, UPS, US Airways, TWA (prior to merger)</td>
</tr>
</tbody>
</table>
15 Different Categories of Issues:

- Broad, Over-arching Issues (3)
- Issues Related to Checklists and Procedures (3)
- Issues Related to Humans (5)
- Issues Related to the Aircraft (2)
- Issues Related to Training (1)
- Selected Emergency Equipment and Evacuation Issues (1)
Emergency and Abnormal Situations Project
Taxonomy of the Domain

Broad, Over-arching Issues

- Philosophies
- Economic and Regulatory Pressures
- Definitions & Perspectives
Philosophy of Response to Emergencies

Evident in Checklist Design
MD-11 In-flight Fire
Nova Scotia, Canada
September 2, 1998
If smoke/fumes are not eliminated, land at nearest suitable airport.
In a study of 15 in-flight fires that occurred between January 1967 and September 1998, the TSB of Canada determined that the average amount of time between the detection of an on-board fire and when the aircraft ditched, conducted a forced landing, or crashed was 17 minutes.
Response to Emergencies:

Job Responsibilities
Influence Perspectives and Behavior
DISPATCH: …If uh you want to land at LA of course for safety reasons we will do that uh wu we’ll uh tell you though that if we land in LA uh we’ll be looking at probably an hour to an hour and a half we have a major flow program going right now uh that’s for ATC back in San Francisco
LA-OPS: ok also uh…just be advised uh because you’re an international arrival we have to get landing rights. I don’t know how long that’s gonna take me…but uh I have to clear it all through customs first.
MX: yea did you try the suitcase handles and the pickle switches, right?

CA: yea we tried everything together, uh...we’ve run just about everything...

MX: um yea I just wanted to know if you tried the pickles switches and the suitcase handles to see if it was movin in with any of the uh other switches other than the uh suitcase handles alone or nothing

CA: yea we tried just about every iteration

MX: and alternate’s inop too huh?

CA: yup, its just it appears to be jammed the uh the whole thing it spikes out when we use the primary. We got AC load that tells me the motor’s tryin to run but the brake won’t move it when we use the alternate. Nothing happens
Dispatchers – Movement and scheduling of aircraft
Operations Agents – Take care of logistics related to landing
Maintenance Personnel – Fix broken airplanes

All were trying to do their jobs as they normally do them.

Very hard to set aside the mindset for normal mode of operations, recognize and communicate the severity of a situation, and to put all other considerations aside to get the airplane safely on the ground.
Emergency and Abnormal Situations Project
Taxonomy of the Domain

15 Different Categories of Issues:

- Broad, Over-arching Issues
- Issues Related to Checklists and Procedures
- Issues Related to Humans
- Issues Related to the Aircraft
- Issues Related to Training
- Selected Emergency Equipment and Evacuation Issues
Checklist and Procedures Issues

- Development of Checklists and Procedures
- Checklist Structure and Design
- Checklist Type and Availability
• Difficulty raising gear after takeoff from Atlanta

• Crew used UNABLE TO RAISE GEAR LEVER procedure in the QRH

• While still climbing, crew realized cabin pressurization and takeoff warning systems were still in the ground mode

• Crew pulled the ground control relay circuit breakers, as directed by same QRH checklist, to place systems in flight mode

• Later portion of the checklist directed the crew to reset the circuit breakers which they did on final approach approximately 100 feet (30.5 meters) above the ground

• Ground spoilers deployed, aircraft hit the ground very hard, nose wheel separated from the aircraft
UNABLE TO RAISE GEAR LEVER

NOSE STEERING WHEEL OPERATE (C)

If steering wheel does not turn and centering indices are aligned:
Indicates a malfunction of the anti-retraction mechanism.

If desired, retract landing gear:

GEAR HANDLE RELEASE BUTTON PUSH (PNF)
GEAR LEVER UP (PNF)

If steering wheel turns:
DO NOT RETRACT THE GEAR.

Indicates ground shift mechanism is still in the ground mode.
No auto-pressurization, and takeoff warning horn will sound when flaps/doors are retracted.

The ground control relay electrical circuits can be placed in the flight mode by pulling the Ground Control Relay circuit breakers (H20 and J20).

Do not exceed VLE (300 kts/M.70).

Approach and landing:

If landing gear was not retracted prior to landing, ground spoilers must be operated manually.

AIRPLANE DEPRESSURIZE (PNF)
ANTI-SKID SWITCH (before 30 kts) OFF (PNF)

GROUND CONTROL RELAY CBs (if pulled) (H20 and J20) RESET (C or FO)

ABNORMAL PROCEDURES

UNABLE TO RAISE GEAR LEVER

NOTE
Indicates possible malfunction of ground shift.

Approach and landing:

If landing gear was not retracted prior to landing, ground spoilers must be operated manually.

AIRPLANE DEPRESSURIZE (PNF)

- Ensure airplane is depressurized prior to landing.

ANTI-SKID SWITCH (before 30 kts) OFF (PNF)
- During landing rollout and prior to 30 kts, momentarily release brakes and place Anti-skid switch to OFF
- Reset Ground Control Relay circuit breakers during taxi and verify that circuits are in the ground mode.
SECTION 3-1

ONE ENGINE INOPERATIVE LANDING

- Plan a flaps 15 landing
- Minimum VREF 15 + 5 on final approach

DESCENT - APPROACH

ANTI-ICE ... AS REQUIRED
TCAS MODE SELECTOR T/A ONLY
ENG START SWITCH (Operating ENG) ON
ALTIMETER & INST SET & CHECKED
*EPR & IAS BUGS CHECKED & SET, VREF 15

NOTE If additional Go-Around thrust is desired accomplish the following below 10,000 ft:

ISOLATION VALVE CLOSE
NO 1 ENG BLD AIR SW OFF
APU BLD AIR SW ON

CAUTION Do not open the APU bleed valve if the ENG FIRE LIGHT remains illuminated:

NO 2 ENG BLEED AIR SW OFF
(Add .03 to Go-Around EPR)

GROUND PROX INHIBIT
FUEL BALANCE
AIR PACK FAULT

If pack not supplied:
 If in single pack operation:
 REMAINING PACK ON
 PACK (Affected) OFF

If pack overheat:
 If in single pack operation:
 REMAINING PACK ON
 PACK (Affected) OFF
 PACK MODE SEL (Affected) MAN/COLD
 When turb temp below limit:
 PACK (Affected) ON
 PACK (Affected) MAN CTL

If both packs inoperative:
 MAX ALTITUDE 10,000 FT/MEA
 WHEN ΔP BELOW 1 PSI:
 RAM AIR ON

PROC: AIR PACK FAULT

If Pack Fault due to low bleed air supply, a bleed leak does not exist, and if WING ANTI-ICE not required:
 BLEED VALVE (Affected sided) OFF
 AIR X FEED MAN/IN LINE
 PACK (Affected) ON

If above FL370:
 ECON FLOW ON

END OF PROCEDURE
Hydraulic caution light illuminated while taxiing… I completed the QRH checklist… We rolled to a stop in the grass… A very poorly written QRH emergency checklist, I believe should be modified and improved.

CALLBACK: … The checklist is for use in-flight, not on the ground… no changes to the checklist have been made in the 2 months since the incident occurred.
Emergency and Abnormal Situations Project

Taxonomy of the Domain

15 Different Categories of Issues:

- Broad, Over-arching Issues
- Issues Related to Checklists and Procedures
- **Issues Related to Humans**
- Issues Related to the Aircraft
- Issues Related to Training
- Selected Emergency Equipment and Evacuation Issues
Issues Related to Humans

- Crew Coordination & Response
- Checklist Use
- Human Performance
- Personnel Issues
- Roles and Behavior of Others
DC-10 In-flight Fire – Newburgh, New York – September 5, 1996

- During cruise at 33,000 ft (10058.4 meters) cabin/cargo smoke warning light illuminated – the FO was the PF
- FE announced the memory items and then began to complete the printed SMOKE AND FIRE checklist
- The FE, without input from the CA, completed the checklist branch for “If Descent is NOT Required”
DC-10 FLIGHT MANUAL

FIRE & SMOKE

1. Oxygen Mask & Smoke Goggles (As Required) ON, 100%

2. Crew & Courier Communications
 Check mike switches to MASK, place cockpit speaker ON, place MIC SEL switch to FLT INT, and establish crew communication.

3. Cockpit Door & Smoke Screen
 Close the cockpit door & smoke screen to exclude heavy concentrations of smoke. Leave door closed unless opening it is dictated by a greater emergency, and then at Captain's discretion.

4. If Descent is required
 PROCEED TO STEP 6

5. If Descent is NOT Required
 PROCEED TO STEP 14

WARNING

Should structural damage be suspected, limit airspeed. Gear and/or Speed Brakes may be used depending on type of damage.

6. Autopilot
 AS REQUIRED

7. Throttles
 IDLE

8. Speed Brake
 FULL

9. Airspeed
 MACH .82 TO .85 (320 TO 350 KIAS)

NOTE

If structural damage is known or suspected, use appropriate turbulence penetration speed.

10. ATC
 NOTIFY

11. Transponder (If no contact with ATC)
 7700

12. Tank Pumps
 ALL ON

13. Altimeter
 SET

14. Type Of Smoke Or Fire
 DETERMINE & PROCEED TO APPROPRIATE PROCEDURE, THIS CHAPTER

A. ELECTRICAL FIRE & SMOKE
 Can best be determined by smell or visible smoke from electrical components (e.g., circuit breaker, radio)

B. AIRCONDITIONING SMOKE
 Can best be recognized by smoke emanating from overhead air conditioning outlets.

C. CABIN CARGO SMOKE
 Can best be recognized by checking smoke detectors on the Second Officers panel, or by observing smoke or fire in the main deck cargo area.

(End of Procedure)

20 March 1994 2-8-1
• CA requested a descent and diversion 3 ½ minutes after the warning light illuminated

• The FE skipped two steps on the second checklist he completed: CABIN/CARGO SMOKE LIGHT ILLUMINATED
1. Pack Function Control Selectors - TWO PACKS OFF

NOTE
Operate the No. 1 Pack only, if available.

2. Cockpit Air Outlets - OPEN

3. Courier Masks & Goggles - VERIFY CN/100%

4. Airplane Altitude - CAPTAIN'S DISCRETION
 - A. Land as soon as possible.
 - B. If above FL 270, consider descent to FL 270. Manually raise cabin altitude to 25,000 ft.
 - C. If below FL 270, and an immediate landing is not possible, climb to FL 270. Manually raise cabin altitude to 25,000 ft. using the MANUAL CAB ALT control wheel.

5. If unable To Extinguish Fire/Smoke - MANUALLY RAISE CABIN ALTITUDE TO 25,000 FEET

6. Cabin Air Shutoff T-Handle - FULL

7. Maintain 0.5 PSI Diff Pressure Below FL 270, Or 25,000 Ft. Cabin Altitude Above FL 270.

8. Fire - CHECK EXTINGUISHED

NOTE
Restricted articles container is designed to be "relatively" air tight so that any fire which may start inside will quickly consume all available oxygen. Depressurizing airplane will further deny oxygen to fire and should result in adequate fire control.

CAUTION
No crewmember should leave the cockpit to fight a fire except when it is determined that the fire is accessible and then only when measures already taken have not been effective. In addition, do not open restricted articles container during flight when a fire within is known or suspected.

9. If It Is Necessary To Leave The Cockpit To Fight A Fire:
 - A. Protective Breathing Equipment - DON/ACTIVATE

NOTE
The PBE is located in a container in the coat closet and should be worn when fighting an actual fire. The walk-around O₂ bottle is also available in the cockpit.
 - B. Fire extinguisher - OBTAIN
 - C. Fires or smoke source - EXTINGUISH

10. Land At Nearest Suitable Airport.

(End of Procedure)
20 March 1994
The crew did not complete the Evacuation Checklist.

Upon landing, the aircraft was still partially pressurized and the crew’s evacuation of the aircraft was impeded and delayed.

The emergency descent checklist was not called for or completed.
DC-10 In-flight Fire – Newburgh, New York – September 5, 1996

• The CA was very busy:
 − Monitoring the spread of the fire
 − Communicating with ATC
 − Trying to coordinate their diversion and emergency descent
 − Monitoring the flying pilot (FO)
 − Concerned with testing the fire detection system
 − Interactions with the FE

➢ The CA showed signs of being overloaded:
 − Emergency descent was delayed
 − Never called for any checklists to be completed
 − Did not adequately monitor the FE’s completion of checklists
 − Mistakenly transmitted his remarks to the crew over the ATC frequency
DC-10 In-flight Fire – Newburgh, New York – September 5, 1996

• The FE was very busy:
 − Selecting and completing emergency checklists and procedures
 − Trying to determine data and Vref speeds needed for landing
 − Completing normal approach and landing checklists
 − Monitoring the progress of the fire
 − Working with the CA to test the fire detection system

➢ The FE showed signs of being overloaded:
 − Missed items on checklists
 − Five times over the span of almost six minutes, he asked for the 3-letter identifier of the airport they were diverting to
 − Did not adequately monitor the status of the aircraft pressurization
The events took place over a time span of less than 4 minutes during a critical phase of flight...the events occurred simultaneously with radio transmissions, configuration changes, airspeed changes and constantly changing altitude...

What we learned from this event is that running the emergency checklists may not be a classical situation where one has plenty of time for analysis and application of curative measures.
We were told to execute a left 360 degree turn. We questioned this with the controller, but he said it was necessary for separation. We reluctantly complied since we did not have a need to land immediately. I felt that this was not acceptable, as we were an emergency.
15 Different Categories of Issues:

- Broad, Over-arching Issues
- Issues Related to Checklists and Procedures
- Issues Related to Humans
- **Issues Related to the Aircraft**
- Issues Related to Training
- Selected Emergency Equipment and Evacuation Issues
Issues Related to the Aircraft

- Critical Aircraft Systems
- Automation Issues
During the takeoff roll the CA indicated that his airspeed indicator was not working.

It appeared to start working properly once the aircraft began to climb but significant discrepancies existed between the CA’s, FO’s, and alternate airspeed indicators.

A few seconds later two advisory messages appeared on the EICAS display: RUDDER RATIO MACH/SPD TRIM

The overspeed warning clacker sounded.
• The center autopilot commanded an 18 degree nose up attitude and the autothrottles were at a very low power setting in response to very high airspeeds as indicated on the CA’s PFD

• The autopilot and autothrottles disengaged

• The stall warning “stick shaker” was activated

• Great confusion reigned; power was applied and then removed more than once

• The FO selected Altitude Hold in an attempt to level off and give them time to sort out what was going on.

• However, the throttles were at too low of a power setting to maintain altitude
Investigators determined that a pitot tube that provided information to the left Air Data Computer (ADC) had most likely been completely blocked.

The left ADC provided information to the CA’s airspeed indicator and the center autopilot.

There was no specific airspeed discrepancy warning on the B757.

The crew did not attempt to clarify the RUDDER RATIO or MACH/SPD TRIM advisories but it is unlikely that any related checklists would have proved useful.
Although the crew agreed that the alternate airspeed indicator was correct they continued to try to use (and be confused by) airspeed information on the PFDs.

The contradictory warnings and indicators were confusing.

The center autopilot and autothrottles contributed greatly to their problems at least initially.

The crew did not attempt to fly the aircraft manually and continued to try use automation that did not help them (i.e., Altitude Hold).
Emergency and Abnormal Situations Project

Taxonomy of the Domain

Issues Related to Training
• Crew intercepted localizer ILS approach to runway 5L at Raleigh Durham – CA was the PF

• At final approach fix descending through 2,100 ft (640 meters) an illuminated ignition light led the CA to believe the left engine had flamed out

• During a missed approach procedure, the CA lost control of the aircraft and it struck terrain – three passengers survived the accident
The illuminated ignition light was actually a minor transient anomaly. Both engines functioned normally throughout the flight until impact.

Company provided incorrect training by associating the ignition light with an engine failure.

Training did not adequately address recognition of an engine failure at low power.
Procedures and checklists worked well, but we did not don goggles (and ended up not needing them). The thing about goggles is they must be donned first – before the mask!

But procedures training and habit all result in donning the mask first. Then if the goggles are required, the mask has to be removed. ‘Smoke Procedures’ should call for goggles first without analysis for need.
Emergency and Abnormal Situations Project
Taxonomy of the Domain

Selected Equipment and Evacuation Issues

- Nearing the final approach fix the engine and alert display (EAD) indicated that the left generator had failed.
- The display units (DU) and standby instruments went dark and then began flashing off and on.
- The crew then noticed a burning smell in the cockpit.
- The forward flight attendants also noticed a burning smell in the cabin and determined the handset used to make announcements and contact the cockpit was inoperative.
- After landing the lead flight attendant tried banging on the cockpit door and speaking loudly to get the attention of the flight crew.
The flight crew did not hear the flight attendant banging on the door or speaking loudly.
Emergency and Abnormal Situations Project

Taxonomy of the Domain

- Definitions and Perspectives
- Economic and Regulatory Pressures
- Development of Checklists and Procedures
- Critical Aircraft Systems
- Automation Issues
- Equipment and Evacuation Issues
- Human Performance
- Personnel Issues
- Roles and Behavior of Others
- Crew Coordination and Response
- Training
- Checklist Structure and Design
- Checklist Use
- Checklist Type and Availability
A Few Current and Recently Completed Studies

• Current Practices in Emergency and Abnormal Training for Flight Crews

• Boeing Checklist Development Process, Design, and Philosophy: B777 ECL and QRH, B737 QRH

• Non-normal Checklists: Issues in Philosophy, Design, and Use

• Stress and Cognition – A Review of the Scientific Literature

• Pilot Critical Incident Interviews

• Emergency and Abnormal Situations: ASRS Incident and NTSB Accident Reviews

• Sponsored Industry-wide International Symposium on Emergency and Abnormal Situations in Aviation – June 2003
Develop guidance for procedure development and certification, training, crew coordination, and situation management based on knowledge of the operational environment, human performance limitations, and cognitive vulnerabilities in real-world situations.
Products and Deliverables

Intermediate Products:
Reports, Articles, Papers, Presentations

End Products:

Field Guides for
- Training Entities and Instructors
- Operators
- Manufacturers
- Regulatory Agencies
 (Certification, POIs)
EAS Project Team

Immanuel Barshi, Ph.D., ATP, CFI
Sean Belcher, M.A., ATP, CFI
Ben Berman, A.B., ATP, CFI
Barbara Burian, Ph.D., PPL
Key Dismukes, Ph.D., ATP, CFI
Captain Richard Fariello (Ret.), B.S., ATP
Colleen Geven, A.A., ATP, CFI
Richard Geven, M.A., ATP, CFI
Todd Kowalski, B.S., CPL, CFI
Chris Reed, B.S., ATP, CFI

NASA
Human Factors research and technology
http://human-factors.arc.nasa.gov/eas
bburian@mail.arc.nasa.gov