08:30

09:40

10:00

11:00

12:00
1:00
1:30

Tuesday (01/10/2012)

Briefings
Intro and MACS Overview
Break

MACS/ADRS simulation architecture and integration with ATOS and
TMA

Using MACS to simulate aircraft operations

Simulation Manager and Flight Deck Stations

Lunch

Basic Air Traffic Control Operations.

Using MACS to simulate near-term air traffic control operations.
Focus ATD-1, Center/TRACON workstations, Scheduling, CMS

Break
Using MACS to simulate far-term automated air traffic control

nneratinne Fnriic nn Sennrntinn Acciirnncre

B
lm Developing MACS Software
RSl thaoraay

A doctor, architect, and programmer were arguing over which was the oldest profession.
The doctor said, “God took Adam’s rib to make Eve. This was surgery! Thus, medicine is the
oldest profession.” The architect said, “No no! God took the Chaos and made the heavens
and the Earth, which is sure the work of an architect, which is thus the oldest profession.”
The programmer looked up from his keyboard, smiled slyly, and said, “And who do you
suppose created the Chaos?”

Developing MACS Software

2,230 files, 415,000 LOC

* Developer Environment

* Threading and Distributed Processing
* Development Philosophy

 The Big Picture

IF YOU STARE AT IT
LONG ENOUGH YOU WILL
EITHER EXPERIENCE THE

ILLUSION OF UNDER—
STANDING IT OR BE TOO
EMBARRASSED TO ADMIT

YOU DON'T.

YOU WONT READ MY
TECHNICAL REPORT S0
I SUMMARIZED IT IN

THIS COMPLICATED

DO YOU HAVE ANY
QUESTIONS TO BETRAY
YOUR IGNORANCE?

15 THE

TRIANGLE
THING MAD AT
THE TUBE?

w608 ©2008 Scott Adams, Inc./Dist. by UFS, Inc

:
-
g
:
:
E
:
:

MACS is 100% pure Java (ADRS is C)
— 2,230 files, 415,000 LOC
Ul in Swing
Parts are object oriented, others procedural design
GIT for source code control
— Each lab has its own branch

— When stable and tested, merge into integration branch
— After regression test, merged into master branch

Mantis for issue and bug tracking

Logdj for logging, may switch to java util logging
— Each class (should) have its own logger instance

There is a unit test (JUnit), but it covers little
Most AOL developers use Eclipse on Windows

Libraries for build and run all functionality

— RXTXcomm, jython, jsapi, freetts, en_us, cmutimelex, cmulex,
cmu_us_kal, logdj-1.2.13.jar

* Git server: https://aolgit.arc.nasa.gov/git/

Protocol Access-Type Example

Read-Write git clone git@aolgit.arc.nasa.gov:MacsSource

Read-Only git://aolgit.arc.nasa.gov/MacsSource.git

Read-Only https://aolgit.arc.nasa.gov/git/

* Wiki server: https://aoll.arc.nasa.gov:8443

— Macs-Documentation: End-User documentation
https://aoll.arc.nasa.gov:8443/display/macs/Home

— Macs-Development: Eclipse & SmartGit configuration screenshots
https://aoll.arc.nasa.gov:8443/display/macsdev/Home

Mantis Bug-tracking software
— https://ofu.arc.nasa.gov/mantis/

Continuous Integration Server
— https://aolgit.arc.nasa.gov/hudson/

Mailing list info
— To subscribe, go to:
* http://eos.arc.nasa.gov/mailman/listinfo/macshelp

Contact Vic () for
accounts

mailto:macshelp@eos.arc.nasa.gov
mailto:vaibhav.kelkar@nasa.gov

MACS operationally usually runs on multiple machines
— ATC stations, Pilot stations, Simulation control, Data collection
— One jar, many setup options
— ADRS for communication, usually on dedicated machines

Each MACS runs many threads (up to 194)
— Threads catch exceptions in periodicRunAction() and restart

— NOTE:
* if (foo !=null)
— return foo.aField; // foo may be null!
* Synchronization is slow, can lead to deadly embrace
— Assignment is atomic
* Vector is synchronized, List is not
* for(int 1 =0; | < aVector.size(); i++_)
— aVector.get(i) // NOT thread safe!
* for(Foo f : Collection<Foo>) will throw concurrant list modification exceptions
* See threads.AcManagerThread.AircraftList for efficient thread-safe list handling

MACS can run on a single machine, most development in this mode
— Add -adrs=offline -operator=Developer-Lite to command line

— Can partially test distributed mode on single machine by running ADRS and multiple MACS on
one machine

* Not recommended for operational use

The Big Picture S
itor

Mmanagement
Update ac lists
Setup Disp|
Windows 'SP ay
Graphics
Process
To/from ADRS COMENGE
Update
Ac State
Update S
trajectories cripting
(python)
Each box
Update
Represents Tools: autoresolver,
weather

One or more threads conflict probe, scheduling,

spacing, weather probe

Segregate air and ground side information

— AcDescriptor.state for air side

— AcDescriptor.atcData for ground side

— Communicate through data link, not in the code!
Check for null references, indices in bounds

When encounter an error, log it and try to stumble on
(if possible)
— include stack trace: logger.error(“msg”, new Exception())

When coding follow suit: in each part of MACS, try to
be consistent with the existing code. We already have
enough inconsistencies!

Avoid redundant comments, do comment ‘why?’
Add, don’t replace functionality

Use the setup files/Ul to turn on/off new capabilities

— Save/restore to setup file

* macsUtility. XmlUtility

* displays.atc.atcDisplayData.Foo.getClassSpecificData()/setClassSpecificData()
— Prompt user to save when closing setup window or exiting MACS

e Call CommonSetupWindow.applySetupChange()

— Calls applyChange(), which you write in subclass if needed
— Be sure Ul is updated when a new file is read (updateBody() is called)

Ul pattern
— Add widgets to CommonWindow.jpanel
— createBody()/actionPerformed()/updateBody() or updateSettings()

— displays.common.DispUtils.addGBComponent
— displays.common.GBPanel.java
e uses macsUtility.Procedure.java
* Regenerates panel on file read by calling createBody() from updateBody()

— displays.common JMacs widgets
— displays.common.JMacsFileMenu

TYPICAL APPLE PRODUCT...

A GOOGLE PRODUCT...

—

i e
"t CITY: AA-9

. STATE: :]
ZIP:

HATHAPPEN

* Different type of ATC display for each ATC
function or domain

e Currently support DSR, STARS, TSD, OCEAN21,
ERAM*

Data Logging
e ADRS
* macsComm

AT ONCE, JUST LIKE THEY SAID, T FELTA || TRULY, THIS WAS

LAST NIGHT I DRIFTED OFF
WHILE READING A L!SP BOOK.

GREAT ENUGHTENMENT. I SAW THE NAKED
smuamﬁorumoe UNFOLD mm‘ FROM. WHICH THE

T MEAN, OSTENSIBLY, YES.
HONESTLY, WE HACKED MosT
OF IT TOGETHER WITH PERL.

SUDDENLY, I WAS BATHED
IN A SUFFUSION OF BLUE.

Every time a controller or pilot does something, log it!

Adding an event to existing log file
— dataCollection.DcEvent.java
 add MY_EVENT(EventClass, DcTrigger, Text Description) to enum

— EventClass determines log file

— Call dataCollection.DcUtilities.logEvent(MY_EVENT, AcDescriptor, Object, String) or
logMyClassEvent(...)
To add new information to output

— message.macs in the appropriate class (e.g., MacsCustomLogMsgEvent.java)
* Add a field to store info
* In constructor, set the field
Append to toString()

— To modify header, add to DcUtilities.getMyClassHeaderStr()

Creating a new log file
— dataCollection.DcLog.java —add MY_DC_CLASS LOG to enum
— Add class message.macs.MacsMyDcClassMsgEvent.java

— Add method message.Msg.macsMyDcClass(args) -- call fireMessageEvent(new
MacsMyDcClassMsgEvent(args))

— Add getMyClassHeaderStr() to DcUtilities
— dataCollection.DcUtilities — add call to macsMyDcClass(args)
— threads.DcThread.java, add to handleMessageEvent()

* Debugging log(4j)
— Command line: add -Dlog4j.configuration="log4j.properties” before the jar file name

e Sample logdj File
— logdj.rootLogger=WARN, A1, FIL1
— logdj.logger.traj4D.Traj4DEvaluator=DEBUG

— logdj.appender.Al=org.apache.log4j.ConsoleAppender
— logdj.appender.Al.layout=org.apache.log4j.PatternLayout
— logé4j.appender.Al.layout.ConversionPattern=%-5p\t%s\t%c.%M\t%m\t%d{HH:mm:ss,SSSN\tS{macs.host}\t[%t]%n

— logdj.appender.FIL1=org.apache.log4j.FileAppender

— logé4j.appender.FIL1.File=../MacsDebug/S{macs.host} log_S{macs.fileTime}.txt

— logdj.appender.append=FALSE

— logdj.appender.FIL1.layout=org.apache.log4j.PatternLayout

— logé4j.appender.FIL1.layout.ConversionPattern=%-5p\t%s\t%c.%M\t%m\t%d{HH:mm:ss,SSSN\tS{macs.host}\t[%t]%n

Used for most inter-machine communication
Communicates to non-Macs systems
Written in C

MACS: mpio.*.java

What is communicated

— Aircraft location, can include radar/ADS-B simulation
— Datalink messages between aircraft and ATC

— Share controller actions between ATC stations

Multiple ADRSs common

— Simulation control and pilots stations must share same
ADRS
* Pilot stations update ac positions for their sector
e Simulation control updates all other ac

Pairs of controllers sometimes work together on a
single sector.

They are called “R side” and “D-side” meaning
Radar and Data.

macsComm keeps the display of data tags,
spacing cones, trajectories synced

When running two MACS on one machine, this
package will give you lots of warning messages.
You can ignore them or put

— log4j.logger.macsComm.RdCommunicator=ERROR in
your logdj properties file

* Key packages
e Useful stuff
* Traps

P i N
| OF ALL MY PROTECTS,)
(I LLKE THE DOOMED)
(ONES BEST. p_r—""

LJALLY, WE DONT HAVE I LOANT YOU TO START
TIME TO GATHER THE DESTGNIMG THE
FRODUCT REQUIRE- PRODUCT ANYLJAY.
MENTS AHEAD OF OTHERLWISE IT WILL
LOCK LIKE LIE AREWNT
ACCOMPLISHING ANY-

%
:
:
:

L

_l'.,l'-'-|'|"-'|",." E 1097 Upited Feature Syndicate., Ing.

commonObijects
— aircraft, runway, waypoint, flight state, sector, trajectory, etc.

— Partially generated by custom program: createCommonObjects
* See commonObjects.Macs for input
* See comments to know where to put custom code

calculators
displays — almost all the Ul code here
displays.setup — most of the setup Ul

dst
— advisories, autoresolution, conflict probe, flight deck spacing, schedulers, atc spacing, traffic
analyzer
traj4D — trajectory code
— Also in commonObjects.Traj4D and TrajPoint

— Be VERY careful when modifying, tell me what you plan to do

* "Rapid Generation and Utilization of Four-Dimensional Trajectories for Air Traffic Control and
Management Applications in MACS," Al Globus, Richard H. Jacoby, Thomas Prevot, James K. Wong

threads — most of the threads
— CommonThread
— DisplayManagerThread is for adding windows

NOTE: jUnit and log4j are in the source tree

macsUtility
— Particularly Utility.java

commonObjects.Tools.java

displays.common
— Particularly displays.common.DispUtils.java

test.* -- JUnit unit testing
NOTE: Macs runs Python scripts at sim time

— simulation.scripting
— Windows->Setup Panels->Scripting Setup

macsUtility and gov.nasa.alsUtility have many of the same classes, use
macsUtility
What you think is incorrect behavior may well be the setup

— I've spent days looking for bugs that turned out to be correct behavior
given the setup options

Reflection is used by some enums and names must match fields
exactly

— displays.timeline.TimelineField/displays.timeline.TimelineDisplayConfig
— displays.timeline.MeterListField/displays.timeline.MeterListConfig

— dst.scheduling.SchedulerField/dst.scheduling.Scheduler

— displays.scenarioEditor.AcField/commonObjects.AcSimulationEntry

— dataCollection.StateLogltem/various

— dataCollection.TrajLogltem/various

MACS generates a great deal of sometimes pointless output

— Tsafe generates a lot of output to avoid JVM bug

The scenario editor does things much differently than the other plan
view windows

NMow Tvyre “23* | | SO AS BUGS GO,
INTO THE FIELD. THAT'S "BAD," RIGHT?

YES, THAT'S BAD,

s
b T

—
=
]
=)
[
=
N
[in]
"
=
]
r
n
[m]

¥

HEY, BO YOU
SMELL SMOKET

http: . bugbash. nety/

20

Capyright

Bug Bash by Hans Bjordahl

* Testin the same airspace and setup as the next experiment
* Check the debug logs after shakedowns

* A (very) Minimal Regression Test

— test.AllTests.main(String[] arguments)
» StabilitySensorTest may give false positives

— Fire up Macs with a bunch of aircraft
* Wait a little while
 ENTER on an ac symbol, data tag should appear
* PICK on the portal, trial plan should appear
* Click-Move-Click or Drag a point on the trial plan
* Type ‘TT, trial plan should disappear
* Click on call sign, filed route should appear
* Type ZZ7Z and filed route should disappear

* Atrue regression test for the integration branch is in work

Al Globus —
Rick Jacoby —

* James Wong —
Vic Kelkar -

T COULD RESTRUCTURE | | EH, SCREW GaOD PRACTICE.

THE PROGRAMS FLOW | | HOW BAD CAN IT BE?

CR ljSE ONE LITTLE goto main_sub3;
'GDTDl INSTEAD. v

Q% Q%%f COMPILE*

, Xx3819
, X0023
, X6313
, Xx3238

mailto:aglobus@arc.nasa.gov
mailto:richard.h.jacoby@nasa.gov
mailto:james.k.wong@nasa.gov
mailto:vaibhav.kelkar@nasa.gov

Backup/additional information

MFACS DSR_

1ATCVIEW -- Configuration: Center

Vi

“3gac |

SN 9p <)
;16.4 NMI’IN {

‘I i‘1 -1-7/:'\%@)&
—_ew]

ASIGN |[swap || RESET ||

EGF 129 M- |

NWAG2E - 1

E ~AEGF 120

F —ANWAG2E

FP ETA BWG STA BWG

a

o8
2056 23

+PENTO |

st

TNWAG28>

|cas5a

[o ‘ | cro | KEVS || cooE |

IALTITUDE LIMITS BBSS9

S HHEHAW

RA Il

IWCCEPT
DATA TAG TOGGLED FOR 1 AC

.'QVM\&\J)D DATA STATUS i

#SWARS3>

|4a7
c3a9

84

y DSR_1 PlanViewSetup

] selected aircraft color

Predictor color

Special Use Airspace color

[| bwelled aircraft color

[]viewtext color

I 1'ap background color

[Current sector color

[| Handoff flash off color

[] Low sector color

[| High sector color

[Tracon sector color

[] NAS center boundary color

I 1A S other airways color

I 1A S jetways color

[] FmS route color

§ DSR_1 SectorPlanViewSetup

C:\Projects\MacsDatabase\settings\default DSR Iy IEIs (el TR

Filter | Maps/Airways |

- THICT | -Mayoinaiways

Externalizable

il

DsrDcView
DsrCrdView
DsrTimeView
DsrBannerView
DsrConflictView
DsrD2View
DsrFrView

DSR Timeline TEST1
DSR CmdinputView
DsrControllerinfoView
DsrConfigView
DsrDIMenuView
DsrDiStatusView
DsrDIBannerView
RngReadView
ZoomView
AcFilterView
BoundaryView

Bl & & EEEREEESEOOODER OO E
Bl zitERERENEN ENERECERENEREN N EEEE EE]

Kl & & O R EEEEEE OO R E EE
Bl O EOOEEEOEEOOO R E & E

RangeView

Package: displays.atcDisplayData
One for each display characteristic (~100)

Each ATC display has an AtcConfigMan that references the
AtcDisplayData objects
Object super-class hierarchy
— AtcDisplayObject
e AtcVisualObject
— OptionalViewAdo

— DisplayChar
— SpacingAid

Range, Keyboard, Handoff -- subclass AtcDisplayObject
Leader, WayPoint, RangeRing -- subclass AtcVisualObject
TimelLineView, CrdView -- subclass OptionalViewAdo
TimelineChar, DataBlockChar -- subclass DisplayChar
Cones, Halos -- subclass SpacingAid

* Hierarchical saving and restoring
* Saving builds a String

— Vector getData()
e getCommonData() ‘'name]
e getVisualData() display it]
» getClassSpecificData() 'min/max/current values]

* Restoring uses a string

— setData(Vector String)
e setCommonData()
 setVisualData()
 setClassSpecificData()

— Removes Strings as it proceeds

CommonWindow -- extends JInternalFrame
— Screen info: sizing, scrolling, jpanel, tool bar. ...

CommonPlanViewWindow -- extends CommonWindow

— Airspace info: sector lists, mouse in NM,
PlanViewSetupWindow, SectorPlanViewSetupWindow,
AtcConfigMan

CommonAtcWindow -- extends
CommonPlanViewWindow

— ATC info: list of views, aircraft, cursors

— OverPanel (Glass pane)

— AtcMap (paintComponent, mouselisteners)

DsrAtcWindow, StarsAtcWindow, TsdAtcWindow,

Ocean21AtcWindow, EramAtcWindow -- extends
CommonAtcWindow

— Class specific methods

* CommonAtcView
— A view is the internal panel on an ATC display
— JPanel
— CommonAtcWindow has list of views
— All views added to OverPanel
— (ERAM views not yet a CommonAtcView)

 OverPanel
— JPanel
— setGlassPane(overPanel)
— No layout manager
— Updates views’ position, visibility, visuals

#wnclude <{5Tdid.w?
nt rgin(veid)

{

int count:

for {ﬂﬂth =13 counT{=500; {Dun'hﬂ
?ﬁﬂr{: {“I will nol Throw paper ﬂﬁf?lq HeS, qui"}_*':l .

1 T RS P ! Dl Pl T [e’ Bl Y

return 0
| §
N || 1 11 1N
- "\.l:w.-u... = 5o —.—..—rm-_ ——
MR g

e Command parts:
— Keyword(s), parameter(s), aircraft(s)
— QP J 5 UAL123
— QP J 6 AAL456 DAL789

e Command status
— AtcCmdlcd.java

 enum CmdStatus
— CMD_ACCEPT
— CMD_REJECT
— CMD_PARTIAL_ACCEPT REJECT

* |n displays.atc.AtcCmd, add enum

— MY_CMD(“key words”, “methodName”,
NumAcNeeded.xxx, minArgs, maxArgs,
DcEvent)

— See ML_MAN_ASSIGN for an example

* In displays.atc.AtcCommandProcessor, add a
method to process the command

— static public AtcCommandOutput methodName(
AtcCommandInput ci)

— See assignSta(AtcCommandInput ci) for an example

* 5 command formats (constructor formats)

 “Best” format
— Command name
— Command keyword(s)
— AtcCommandProcessor method
— Number of aircraft needed
— Minimum/maximum number or arguments
— Data collection event
— Optional: Window type [DSR, STARS, ...]
e Example

— DLSL ON

e DLSL("DLSL", "dIStatusList", NumAcNeeded.ZERO, 1, 1,
DcEvent.ATC_SET_DL_STATUS_LIST, WindowType.STARS)

— QP C6 AAL123 DAL456
* KB_CONE("QP C", "cone", NumAcNeeded.ZERO_OR_MORE, 0, 1, DcEvent.ATC_CONE),

e Utility methods also in AtcCmd
— acceptsMultipleAc()
— getNumAcNeeded()
— getCmdStr()

e Definitions
— AtcCmd
— AtcCmdlcd

* Processing
— AtcCommandProcessor
— DsrCommandProcessor
e Used for all ATC windows
* Input/Output
— Used by processing method

— AtcCommandlnput & AtcCommandOutput

* AC list, parameter list, forced, CommonAtcWindow, status, original
input

— AtcCommandOutput
* Accept & reject lists of AC

DsrCommandProcessor

All commands for all ATC display windows pass through here
Historically processed all commands (parse and process methods)
Uses utilities

parseCmd(...)

ArrayList<String> getAcFromInput(...)
AtcCommandInput createCommandIinput(...)
checkForLocalCmd — debugging, symbolic arguments

executeAtcCommand(...)

Java reflection by looking for method name in AtcCommandProcessor
AtcCmdProcessor.execute(methodName, Cl)

Still does many, some converted to “sliver” methods

return executeAtcCommand(inputCmdStr, "route", atcCmd, tokens, 0, Macs.INT_NOT_SET);

AtcCommandProcessor
Add “process” method for new commands
Process methods

Input: AtcCommandIinput
Output: AtcCommandOutput

Comment all the input syntaxes for each execute method

// AS R <scheduler> <HHMM> <HHMM>
// QP J <ac>
// QP J <radius> <ac> radius => 1.0 .. 9.9, 10 .. 30

commonObijects.TagTextDescr
— add field myField

— either run common objects tool or fix up auto-generated
methods

— set in populateXXXX(arg) methods
e displays.datablock.Dblcd.java
— add to end of DB_FIELD _NAME
— add to end of TAG_EXAMPLE
e displays.dataBlock.DataTag
— add TAG_MY_ITEM to static ints
— set TAG_MY _ITEM in initiateTagltemld()

— modifify DataTag.setTagText(TagTextDescr) to set
tagDisplayText[TAG_MY_ITEM] from TagTextDescr.myField

NOTE: there is a TagTextDescr.debugText that you may set
freely

