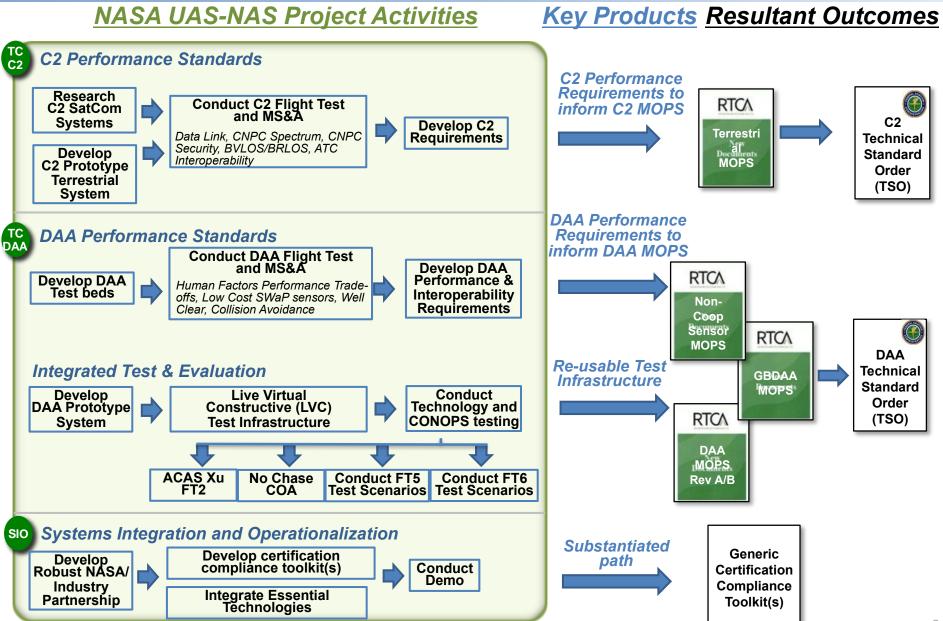
UAS Integration in the NAS: Detect and Avoid

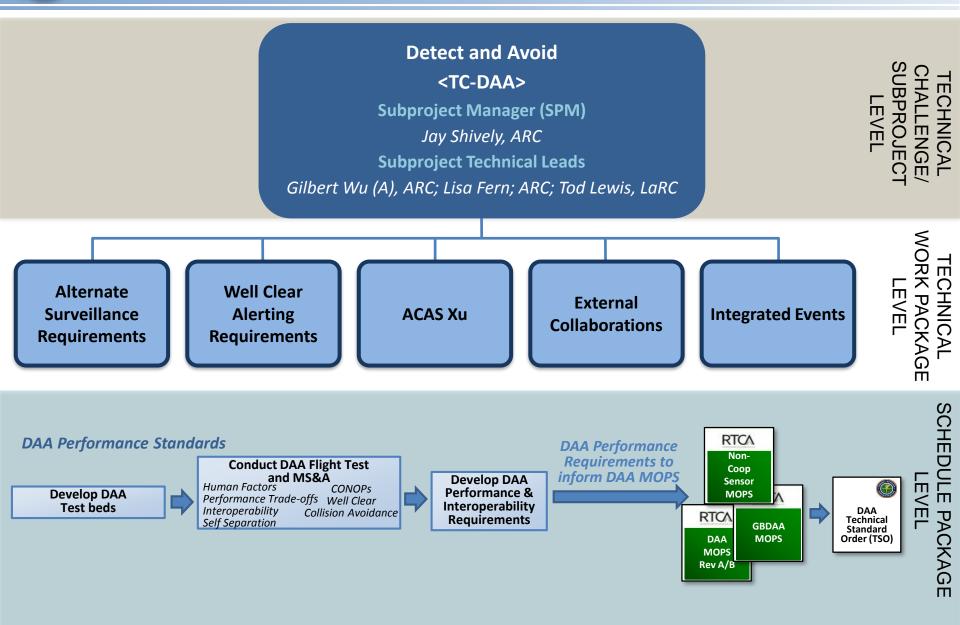
Conrad Rorie *for* Jay Shively Detect and Avoid Sub-Project Manager

UAS INTEGRATION IN THE NAS



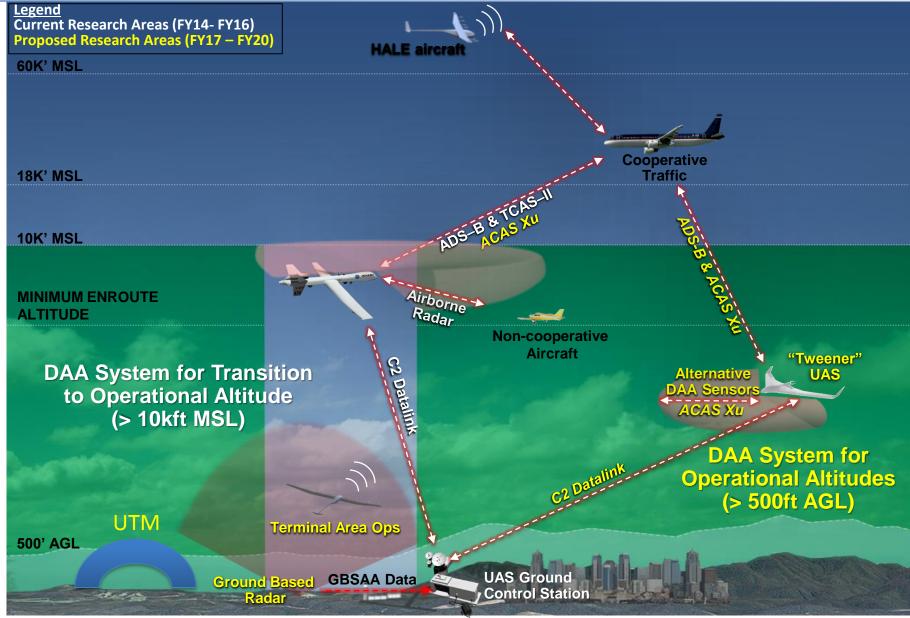
UAS-NAS Phase 2 Project Organization Structure

ECT OFFICE EVEL	Project Manager (PM Deputy PM Chief Engineer (CE)		Project Leadership Robert Sakahara, AFRC Davis Hackenberg, AFRC William Johnson, LaRC			
PROJECT C LEVEI	Project Support Sr. Advisor AFRC Staff Engineer Lead Resource Analyst Resource Analysts Scheduler Risk Manager/Outreach Change/Doc. Mgmt Admin Support	Chuck Johnsons, Dan Roth, AFRC April Jungers, AFRC Amber Gregory, AFRC Warcquel Frieson, ARC Julie Blackett, GRC Pat O'Neal, LaRC Irma Ruiz, AFRC Jamie Turner, AFRC Lexie Brown, AFRC Sarah Strahan, AFRC		Proje Deputy Chief Enginee SIO Technical Manag		ng Office Clint St. John, AFRC Kurt Swieringa, LaRC
SUBPROJECT LEVEL	Command and Co (C2) Subproject Mana Mike Jarrell, GF Subproject Techr Lead Jim Griner, GR	iger RC hical	Detect and Avoid (DAA) Subproject Manager Jay Shively, ARC Subproject Technical Lead Gilbert Wu (A)/Confesor Santiago, ARC; Lisa Fern; ARC; Tod Lewis, LaRC		(IT Subprojec Mauricio Riva Murph Subproject T Ty Hoang, ARC	and Evaluation &E) et Manager s, AFRC / Jim y, ARC echnical Lead C (A) ; Sam Kim, FRC



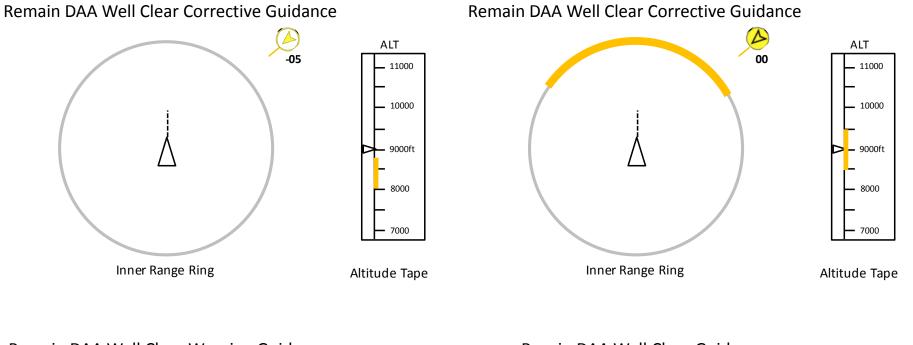
UAS-NAS Project Value Proposition

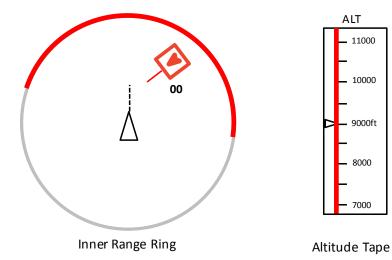
DAA Subproject Structure for Project Phase 2

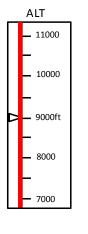


- General. When weather conditions permit, regardless of whether an operation is conducted under instrument flight rules or visual flight rules, vigilance shall be maintained by each person operating an aircraft so as to see and avoid other aircraft. When a rule of this section gives another aircraft the right-of-way, the pilot shall give way to that aircraft and may not pass over, under, or ahead of it unless well clear.
- Piloted "see and avoid" => UAS "detect and avoid"
- Pilot vision => surveillance sensors (on- or off- board, or both)
- Pilot judgment of well clear => mathematical expression of well clear
- Phase 1 DAA well clear defined as:
- Horz Miss Distance = 4000ft
- Vert Miss Distance = 450ft
- modTau = 35sec
- DMOD = 4000ft

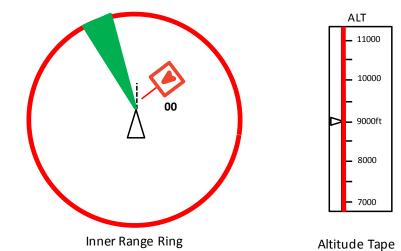
DAA Operational Environments


- <u>RTCA DO-365</u>:
 - Minimum Operating Performance Standards for Detect and Avoid Systems
- <u>RTCA DO-366</u>:
 - Minimum Operating Performance Standards for Air-to Air Radar Traffic Surveillance
- FAA Technical Standard Orders:
 - TSO-C211, Detect and Avoid
 - TSO-C212, ATAR for Traffic Surveillance
- NASA DAA Team Contributions:
 - Well clear definition
 - Alerting
 - Guidance
 - Displays
 - Reference algorithm
 - Extensive modeling and simulation

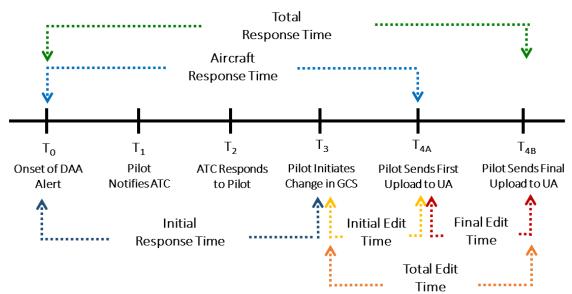

Symbol	Name Pilot Action		DAA Well Clear Criteria	Time to Loss of DAA Well Clear	Aural Alert Verbiage
	Warning Alert	 Notify ATC as soon as practicable after taking action 	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 450 ft modTau = 35 sec	25 sec	"Traffic, Maneuver Now" x2
	Corrective Alert	 Coordinate with ATC to determine an appropriate maneuver 	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 450 ft modTau = 35 sec	55 sec	"Traffic, Avoid"
	Preventive Alert On current course, corrective action should not be required		DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 700 ft modTau = 35 sec	55 sec	"Traffic, Monitor"
	Guidance Traffic Guidance Traffic bands outside of current course		Associated w/ bands outside current course	х	N/A
A	Remaining Traffic • Traffic within sensor range		Within surveillance field of regard	Х	N/A



Phase 1 DAA Suggestive Maneuver Guidance



Remain DAA Well Clear Warning Guidance



Regain DAA Well Clear Guidance

- Multiple human-in-the-loop (HITL) simulations were performed to identify requirements for UAS DAA systems. The following metrics were used to assess pilot and system performance:
 - Pilot response times
 - Proportion of losses of DAA well clear
 - Severity of losses of DAA well clear
 - ATC interoperability
 - Subjective assessment & workload

Pilot-Air Traffic Control Interaction Timeline & Metrics

- Augmented Well Clear Definitions
 - Terminal
 - 2 HITLs (TOPS 1/1B) completed, 3rd HITL (TOPS 2) in planning at LaRC
 - Low SWaP
 - HITL planned for NOV 2018
- ACAS Xu
 - Horizontal RAs
 - Auto-Execute & Return-to-Course functionality
- Low SwaP Sensors
 - RADAR
 - Cooperative agreement with Honeywell
- Flight Tests
 - FY 19 Low SWaP RADAR
 - Unmitigated encounters
 - FY 20 Pilot response to new well clear definition; use of Low SWaP RADAR