Super-Dispatchers: Remote Operations Centers for On-Demand Fleet Management Victoria Chibuogu Nneji¹,

Mary (Missy) Cummings¹, Alexander Stimpson¹, Kenneth H. Goodrich²

Nneji, V. C., Cummings, M. L., Stimpson, A. J., & Goodrich, K. H. (2018). Functional Requirements for Remotely Managing Fleets of On-Demand Passenger Aircraft. In 2018 AIAA Aerospace Sciences Meeting (p. 2007). ¹Duke University ²NASA Langley Research Center March 14, 2018 NASA Ames/ADF EAS Dispatcher Workshop

Outline

- 1. What is a remote operations center (ROC)?
- 2. Why would we need ROCs for on-demand mobility (ODM)?
- 3. How could ROC requirements vary with autonomous systems?
- 4. What should we consider when staffing and designing ROCs?
- 5. Where do we need to focus our ROC efforts for ODM concepts to become operational?

What is a remote operations center (ROC)?

1 2 3 4

Why would we need ROCs for on-demand mobility (ODM)?

Why would we need ROCs for on-demand mobility (ODM)?

- To remotely manage fleets of vehicles
- To interface with air traffic control
 - Conflict avoidance
 - Separation of aircraft
 - Scheduling of shared resources

Why would we need ROCs for on-demand mobility (ODM)?

- Dispatch operations center/call center/supervisory control center
 - Energy requirements
 - Passenger requirements
 - Contingency requirements

How could ROC requirements vary with autonomous systems?

Maintain Vehicle Safety

Maintain Safe Separation

- From other Participating Vehicles
- From Fixed and Dynamic Hazards

Maintain Vehicle Control

- Nominal and Contingency Limits
- Physical and Cyber Security

Maintain Sufficient Conditions to Complete Trip

- Ride Quality
- Energy
- Vehicle Performance
- Navigation Accuracy

A Concept of Operations for On-Demand Passenger Aircraft

How could ROC requirements vary with autonomous systems?

Function to Maintain:	Remote Operations Center Tasks		
	Conventional	Revolutionary Vehicle Autonomy	Evolutionary* Vehicle Autonomy
Safe Separation from	Plan flights within	Monitor airspace status, command	Monitor airspace, communicate with
traffic	ATC restrictions	aircraft to UTM	pilots if adjusting separation
Safe separation from	Plan flights to avoid	Calibrate fleet maps with local	Share new information w/ & between
hazards	obstructions	infrastructure data streams	PIC to avoid hazards
Vehicle control	Communicate with	Monitor A/C <u>sens</u> or-actuator status,	Monitor fleet, use AIDA if rerouting &
	PIC if rerouting	use AIDA if rerouting	communicate w/ PIC
Physical and cyber	Verify PIC, monitor	Monitor fleet network status, maintain	Verify PIC, communicate & maintain
security		command authority	alertness
Energy management	Compute flight	Compute feasibility to land, ensure	Monitor fleet, provide PIC safe landing
	energy	sufficient between re-charges	alternatives if low energy
Navigation	Follow flights	Verify navigation of A/Cs on approach	Verify navigation w/ PIC
Ride quality	Communicate with	Monitor A/C sensors, communicate	Monitor & provide update information
	PIC if disturbance	pertinent new info with passengers	for passenger comfort
Systems management	Communicate with	Monitor network, supervisory control if	Monitor subsystem health,
	PIC in contingency	A/C fails, redirect resources w/ AIDA	communicate w/ PIC if A/C fails

2 3 4

What should we consider when staffing and designing ROCs?

- Customer service
- Vertiport service
- Resource scheduling
- Vehicle command authority

- Teams of human and AI agents
 - Path planning
 - Scheduling
 - Resource allocation
- Remote operator tactical interface
 - Monitor
 - Command
- Scaling up to network-level
 - Exception management
 - Emergent behavior identification

4

Where do we need to focus our ROC efforts for ODM concepts to become operational?

- Metrics for ROC operator workload, system safety and efficiency
- How many more or less ROC operators can be staffed to manage vehicles with revolutionary autonomy?
- Which types of artificial intelligence decision aids should be designed for ROC operators?
- How many different types of ODM vehicles can be managed?
- How many vehicles can be managed at a time?

As vehicles and vertiports are being designed, ROC concepts must also be investigated to support equivalent or better levels of performance on functional requirements.

5

How will these remote operations centers need to innovate to support new fleet demands?

1 2 3 4 5

Humans and Autonomy Lab

Transportation networks rely on **Motivation** remote operations centers (ROCs) vehicle and network autonomy

Reduction in crew size and rise in

ROCs required for supervisory control

Acknowledgements

- American Airlines, Southwest Airlines, Rio Grande Pacific Company, UPS
- FAA, NASA Ames, NUAIR, UTM, Kairos, Uber, Airbus A3, Ehang, Lilium Aviation, Gryphon Sensors, Lockheed Martin-Sikorsky
- Federal Railroad Administration and US Department of Transportation
- National Institute of Aerospace and NASA Langley Research Center
- Missy Cummings, Alfredo Garcia, Jeffrey Glass, Michael Zavlanos
- Comrades in Duke Robotics and AIAA

Thank you

Let's get coffee: <u>vcn3@duke.edu</u> inlinkedin.com/in/victorian @ifindx

References

- ¹ Holden, J., and Goel, N., Fast-Forwarding to a Future of On-Demand Urban Air Transportation, San Francisco: 2016.
- ² Nneji, V. C., Stimpson, A., Cummings, M. (Missy), and Goodrich, K. H., "Exploring Concepts of Operations for On-Demand Passenger Air Transportation," *17th AlAA Aviation Technology, Integration, and Operations Conference*, NASA, ed., Denver, CO: American Institute of Aeronautics and Astronautics AVIATION Forum, 2017, pp. 1–12.
- ³ Mueller, E. R., Kopardekar, P. H., and Goodrich, K. H., "Enabling Airspace Integration for High-Density On-Demand Mobility Operations," *17th AIAA Aviation Technology, Integration, and Operations Conference*, 2017, pp. 1–24.
- ⁴ Gao, F., Cummings, M. L., and Solovey, E., "Designing for robust and effective teamwork in human-agent teams," *Robust Intelligence and Trust in Autonomous Systems*, R. Mittu, D. Sofge, A. Wagner, and W.F. Lawless, eds., Springer US, 2016, pp. 167–190.
- ⁵ Mekdeci, B., and Cummings, M. L., "Modeling multiple human operators in the supervisory control of heterogeneous unmanned vehicles," *Proceedings of the 9th Workshop on Performance Metrics for Intelligent Systems*, 2009, pp. 1–8.
- ⁶ Federal Aviation Administration, *Aircraft Dispatcher Practical Test Standards*, USA: Flight Standards Service, 2013.
- ⁷ Stouffer, V. L., and Goodrich, K. H., "State of the Art of Autonomous Platforms and Human-Machine Systems: Only a Fool Would Stand In the Way of Progress," 15th AIAA Aviation Technology, Integration, and Operations Conference, 2015, pp. 1–15.
- ⁸ Hemm, R. V., Horio, B. M., DeCicco, A. H., and Lee, D. A., "Assessment of System Safety Risks for NextGen Concepts and Technologies," *12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference,* Indianapolis: 2012, pp. 1–25.
- 9 Rogers, R., *Pilot Authority and Aircraft Protections*, Airworthiness Performance Evaluation and Certification Committee, Air Line Pilots Association 1999.
- ¹⁰ Besco, R. O., "Releasing the Hook on the Copilot's Catch 22," *Human Factors and Ergonomics Society* 39th Annual Meeting, 1995, pp. 20–24.

References

- ¹¹ Speciale, R. C., and Venhuizen, B. D., "The Pilot in Command and the FARS: The Buck Stops Here (Almost Always)," North Dakota Law Review, vol. 83, 2007, pp. 817–836.
- ¹² Bredereke, J., and Lankenau, A., "A Rigorous View of Mode Confusion," *Computer Safety, Reliability and Security, 21st International Conference, SAFECOMP 2002, S. Anderson, ed., Springer-Verlag Berlin Heidelberg, 2002, pp. 19–31.*
- ¹³ Burgstaller, S., Flowers, D., Tamberrino, D., Terry, H. P., and Yang, Y., *Rethinking Mobility*, 2017.
- ¹⁴ Sheridan, T. B., "Teleoperation, telerobotics and telepresence: A progress report," *Control Engineering Practice*, vol. 3, 1995, pp. 205–214.
- ¹⁵ Castonia, R. W., Boussemart, Y., and Cummings, M. L., "The Design of a HSMM-based Operator State Modeling Display," *AIAA Infotech@ Aerospace*, American Institute of Aeronautics and Astronautics, 2010, pp. 1–10.
- ¹⁶ Stimpson, A. J., Tucker, M. B., Ono, M., Steffy, A., and Cummings, M. L., "Modeling risk perception for mars rover supervisory control: Before and after wheel damage," *IEEE Aerospace*, 2017, pp. 1–8.
- ¹⁷ Ososky, S., Sanders, T., Jentsch, F., Hancock, P., and Chen, J. Y. C., "Determinants of system transparency and its influence on trust in and reliance on unmanned robotic systems," SPIE Defense+ Security, R.E. Karlsen, D.W. Gage, C.M. Shoemaker, and G.R. Gerhart, eds., International Society for Optics and Photonics, 2014, pp. 1–12.
- ¹⁸ Kaber, D. B., and Endsley, M. R., "The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task," *Theoretical Issues in Ergonomics Science*, vol. 5, 2004, pp. 113–153.

