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Predicting Pilot Performance in Off-Nominal Conditions: a Meta-Analysis and Model Validation 
 

Pilot response to off-nominal (very rare) events represents a critical component to understanding the safety of next generation airspace 
technology and procedures. We describe a meta-analysis designed to integrate the existing data regarding pilot accuracy of detecting 

rare, unexpected events such as runway incursions in realistic flight simulations. Thirty-five studies were identified and pilot 
responses were categorized by expectancy, event location, and whether the pilot was flying with a highway-in-the-sky display. All 

three dichotomies produced large, significant effects on event miss rate. A model of human attention and noticing, N-SEEV, was then 
used to predict event noticing performance as a function of event salience and expectancy, and retinal eccentricity. Eccentricity is 
predicted from steady state scanning by the SEEV model of attention allocation. The model was used to predict miss rates for the 

expectancy, location and highway-in-the-sky (HITS) effects identified in the meta-analysis. The correlation between model-predicted 
results and data from the meta-analysis was 0.72.  
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INTRODUCTION 
 

In the face of challenges to the future airspace system, 
brought about by increased passenger travel demand and 
enduring weather delays, a program of research and 
development has been initiated for the next generation of the 
airspace entitled NextGen (JPDO, 2007). This program 
includes defining a set of new technologies and procedures, 
integrating the flight deck with air traffic management, as 
supported by various automation tools and decision aids. 
While the increased airspace productivity fostered by these 
technologies and procedures has been well modeled and 
predicted, the safety implications when unexpected and 
unpredicted circumstances prevail are less understood 
(Burian, 2008). The objective of the research reported here is 
to provide a validated computational model of pilots’ 
responses to unexpected events which, in turn, can be 
incorporated into overall pilot performance models (Gore, 
2008; Foyle & Hooey, 2008) to evaluate both productivity and 
safety of NextGen technology and procedures.  

 
The psychology of human response to unexpected events 

can be approached from two overlapping perspectives. On the 
one hand, ample data exist to show that people’s response to 
the unexpected slows in inverse proportion to event 
probability, a finding well incorporated in the Hick-Hyman 
Law of response time (Fitts & Posner, 1967; Wickens & 
Hollands, 2000). On the other hand, one can analyze the three 
information-processing operations that typically take place in 
real world contexts when unexpected events occur: noticing, 
diagnosing, and responding. While the processing of all of 
these may be delayed by low expectancy, more significant is 
the fact that the first operation may fail altogether: people 
often do not notice unexpected events, even if these events are 
relatively salient. This phenomenon is known as change 
blindness, (Simons & Levin, 1997; Rensink, 2002; Stelzer & 
Wickens, 2006), or inattentional blindness. In a classic study 

of situation awareness breakdowns in aviation, Jones and 
Endsley (1996) observed that the majority of such breakdowns 
occurred at the first phase of Situation Awareness (SA) 
(noticing and perception), rather than later phases of diagnosis 
and prediction. Furthermore, tragedies in aviation can be 
associated with failures to notice critical off-nominal events, 
such as the failure of a TCAS-position broadcast (Command 
of Aeronautics, 2006) or the unintentional decoupling of an 
autopilot (Wiener, 1977). 
 

The modeling of pilot response delay (or non-response) to 
unexpected events is important for projections of NextGen 
procedural safety because of the time and money required to 
carry out pilot-in-the-loop (PIL) simulations.  Also, 
manipulations that can be made in PIL simulations may be 
limited, particularly for conceptual systems and procedures for 
which pilots may not have experience, and hence the subject 
population for PIL simulations will not be typical of the future 
population anticipated to execute those procedures. Valid 
computational models (such as MIDAS; Gore, 2008) that can 
make predictions about performance in operationally 
meaningful units (e.g., seconds delayed, events missed) can 
fill this gap. While such models may not be able to offer 
precise predictions of optimal configurations, they often can 
identify poor designs, and can be used to narrow the parameter 
space that should be examined more thoroughly with PIL 
research. 
 

Our approach to this issue consists of four phases: 
1) Identifying, through a meta-analysis, pilot response 
parameters (noticing time and miss rate) for unusual events. 
2) Developing and refining a computational model (Noticing – 
Salience, Expectancy, Effort, and Value, N-SEEV) to predict 
noticing parameters for unexpected events. 3) Validating our 
model predictions against the meta-analysis data.  
4) Upon validating the model, applying it to a series of 
NextGen scenarios. 
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METHOD: META-ANALYSIS 
 

The aviation human factors literature was thoroughly 
reviewed from the following sources: Proceedings of the 
Annual Conference on Manual Control, Proceedings of the 
Digital Avionics Systems Conference, IEEE Transactions on 
Systems, Man, Cybernetics: Part A: Systems and Humans and 
Part C: Applications and Reviews, International Journal of 
Aviation Psychology, International Symposium on Aviation 
Psychology, Journal of the Human Factors and Ergonomics 
Society, NASA Technical Reports Server, Proceedings of the 
Human Factors and Ergonomic Society Annual Meeting, 
USA/Europe Air Traffic Management R&D Seminar 
(http://www.atmseminar.org/). 
 

Studies were included in the meta-analysis if they met the 
following four criteria: (1) carried out in a reasonable or high 
fidelity aviation simulation environment; (2) presented some 
off-nominal (ON) event or unexpected event, such as an 
engine failure or runway incursion; (3) were sufficiently 
descriptive of this event; and (4) presented performance data 
on the mean time to detect, or the proportion of times it was 
noticed. 

 
A total of 35 studies that met the above criteria were 

identified. Within these we made an effort to uniquely 
categorize each study (or condition within a study), for which 
off-nominal performance was measured, in terms of five 
dichotomous variables: (1) whether the ON event was visible 
out-the-window or head down in the cockpit; (2) whether a 
Head-Up Display (HUD) was present or not; (3) whether a 
highway-in-the-sky (HITS) was present or not (Wickens & 
Alexander, 2009); (4) whether the event was truly surprising 
(e.g., occurred on the last landing of the experiment within an 
otherwise failure-free series of landings) or simply 
“unexpected” (e.g., a failure of one system late in an 
experiment, but following an earlier failure of a different 
system); (5) whether the event occurred during taxi, or during 
high workload periods of flight (particularly approach and 
landing). The difference described in point 4, the contrast 
between truly surprising events and simply unexpected events, 
was referred to as the difference between “black swans” and 
“grey swans” by Taleb (2007).    

 
RESULTS: META-ANALYSIS 

 
We examined the 32 cells formed by this 2x2x2x2x2 

“design” and found that several of them were unpopulated by 
any valid experimental data; or had too few observations to 
contribute to reliable estimates of mean response time (RT) or 
event detection rate. Hence considerable pooling of data 
across these dimensions was required (see Gore et al., 2009 
for details). Because the different studies that contributed to 
each cell of the design often varied greatly in their sample 
size, we weighted their contribution proportional to sample 

size (i.e., statistical reliability) a procedure often performed in 
meta-analyses. This weighting was accomplished by summing 
the two terms of the ratio (#events detected)/(total #events 
experienced) across all studies within a cell of the relevant 
comparison. The pooling procedures eventually yielded three 
dichotomous contrasts that produced highly reliable statistical 
effects on detection performance, which was expressed as 
miss rate (MR):  
 
• (1) Out-the-window (OTW) events versus heads-down 

location of ON events (MR = 0.55 and 0.19 respectively; 
χ2 = 21.65, p < 0.01). Outside world events were missed 
more than events that were presented on a heads-down 
display.   

• (2) Detection of truly surprising OTW ON events while 
flying with or without a HITS; (MR = 0.55 and 0.26 
respectively; χ2 = 20.46, p < 0.01). Truly surprising ON 
events, present in the outside world, were more likely to 
be missed when flying with a HITS than when flying 
without a HITS.  

• (3) Detection of OTW events that were truly surprising 
versus simply unexpected. (MR = 0.50 and 0.23 
respectively; (χ2 = 40.79, p < 0.01). Outside events that 
were truly surprising were less likely to be noticed than 
simply unexpected events. There was inadequate response 
time data in most studies, so this analysis focused 
exclusively on miss rate. 
 
It is noteworthy that these robust effects were observed in 

spite of the fact that the studies pooled within each category 
differed on other variables in a manner to increase within-
category variance (and hence reduce statistical power). Also, 
in selecting these particular dichotomies, care was taken to 
ensure that there were no major confounds between levels 
(e.g., HITS studies were carried out with novices, non-HITS 
studies with experts). The variables identified through this 
phase of the research were then mapped onto and used to 
populate the SEEV parameters in the N-SEEV portion of the 
research. 

 
 
METHOD: N-SEEV MODEL IMPLEMENTATION 

 
The SEEV model (Wickens et al., 2003; Wickens et al., 

2008) predicts how visual attention is guided in large scale 
environments by the salience of events, inhibited by the effort 
required to move attention, and attracted to locations 
according to the expectancy of seeing an event at a particular 
location, and the value of that event (or cost of missing it). 
The value of an area of interest is equal to the priority of the 
task served by that area multiplied by the relevance of an 
event at that area to the task in question. A computational 
version of this model drives the eyeball around an 
environment, such as the dynamic cockpit, according to the 
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four SEEV parameters. For example, the simulated eyeball 
following the model will fixate more frequently on areas with 
a high bandwidth (and hence a high expectancy for change), as 
well as areas that support high-value tasks, like maintaining 
stable flight (Wickens et al., 2008).  

 
The N-SEEV model (Noticing-SEEV; Wickens et al., 

2009; McCarley et al., 2009) is an elaboration of SEEV, which 
allows SEEV to drive steady state scanning, but then imposes 
a to-be-noticed event (TBNE) somewhere in the environment. 
This event is associated with a salience value, derived from a 
computational model of Itti and Koch (2000), and augmented 
to include the salience of changes. Each TBNE is also 
associated with expectancy and value. For example, a red-
flashing warning is quite salient, and valuable to be noticed; 
but potentially unexpected. A runway incursion, while 
valuable to be noticed, may be neither expected nor salient.  
N-SEEV associates these parameters with numeric values, and 
predicts a noticing time as a function of where the eye is 
fixated relative to the TBNE. Because the eye scans across the 
cockpit environment, the model will actually predict a 
distribution of noticing times. This distribution can be 
interpreted as a cumulative probability function, generating 
the probability that the location of the TBNE will be fixated 
within time T. Parameters of the model can then be adjusted 
according to additional assumptions that, if the area of the 
TBNE is not fixated within some criterion time (Tc), then the 
event will be missed. In this way, the model if run repeatedly, 
can generate a miss probability estimate. 

 
The N-SEEV model was initially validated against two 

classes of empirical data sets. First, a set of three general 
aviation (GA) studies (Wickens et al., 2003) along with a pilot 
visual scanning study using a Boeing-747 simulator (Sarter et 
al., 2007) was used to validate the parameters of SEEV. 
Through this effort, it was possible to predict over 90% of the 
variance of pilot scanning in the GA studies, and 75% of the 
variance in scanning within the automated Boeing 747 cockpit 
(See McCarley et al., 2009; Wickens et al., 2009). Second, the 
noticing (N) component of the N-SEEV model was validated 
against noticing time and miss-rate data collected by Nikolic, 
Orr and Sarter (2004), in an experiment simulating pilots 
noticing flight mode annunciator changes in a visual 
environment that varied in its clutter, spatial layout, and event 
salience, all parameters that could be incorporated into  
N-SEEV. With repeated iteration of the model, this exercise 
enabled identification of particular parameter settings that 
could accurately predict both the noticing time and miss rate 
data from the various conditions of the Nikolic et al. 
experiment (Wickens et al., 2009). In particular, the 
assumption of a scan rate of 2 fixations/sec, and a miss 
criterion of 7.5 s (e.g., if the target was not fixated within 7.5 
s, it would be missed) were found to provide the best fit to the 
existing data, yielding correlations between predicted and 
obtained data of greater than 0.97 for both noticing time and 
miss rate.  

RESULTS: N-SEEV MODEL VALIDATION 
 

The next step in this effort was to validate the model 
against the meta-analysis data, as the empirical data 
represented a robust data set that was highly representative of 
a range of actual flight operations. The model was applied to 
the cockpit layout rendered in Figure 1. Within this figure, the 
six different scenarios, created by the two levels of each of the 
dichotomous variables revealed from the meta-analysis (OTW 
vs. down location, presence or absence of HITS, and high vs. 
low expectancy) were each characterized by parameters of  
N-SEEV. Six model runs were then carried out, one for each 
level of the three dichotomies, with each run iterated 1000 
times to generate the requisite Monte-Carlo distribution of 
noticing times. Using the same N-SEEV model parameters 
established by the validation work described in the previous 
section (also see McCarley et al., 2009; Gore et al., 2009), a 
set of miss rate predictions were generated across the six 
conditions.  

 

 
 
Figure 1. Instrument panel layout upon which model was 

exercised. The boxes represent cockpit display areas of 
interest. 

 
For the HITS comparison, the ON was located just 

above the OTW view in Figure 1, and was given a bandwidth 
(BW) of 0 (no expectancy). The attitude direction indicator 
(ADI) was assigned high bandwidth and value levels when the 
HITS was present, and lower levels when the HITS was 
absent. For the ON location comparison, the ON was located 
either above the OTW view or “down” at the location just 
below the ADI. Standard (non HITS) BW and value levels 
were chosen appropriate for visual flight rules (VFR) flight 
(Wickens et al., 2003) and ON expectancy (BW) while low, 
was not at 0. For the expectancy comparison ON was located 
above the OTW view, and was assigned a BW value of either 
0 (no expectancy) or 0.2 (low expectancy), using other 
parameters to characterize visual meteorological conditions 
(VMC) flight. 
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The model-predicted miss rates for the six conditions are 
shown on the X-axis of Figure 2. The Y-axis depicts the 
corresponding obtained miss-rates from the meta-analysis. 
Connected pairs of points represent the two conditions 
compared in each of the three contrasts, as labeled (i.e., 
expectancy effect, ON location effect, and HITS presence 
effect). 

 
 
Figure 2. Validation of N-SEEV model predicted miss rate (x-
axis) against measured ON miss rate from the meta-analysis. 
Lines connect the two points within each dichotomous 
comparison. 

 
Two general features of this model validation are 

noteworthy. First, the overall correlation, across the six data 
points, between predicted and obtained miss rate was r = 0.72, 
a reasonably good fit given the heterogeneity of variables that 
were varied across the six conditions and the diversity of 
empirical sources contributing to the meta-analysis. Second, a 
regression line for the six points generate a slope value 
reasonably close to 1.0 (1.2) and an intercept reasonably close 
to zero (0.08). This means that not only are changes in model 
predictions echoed in changes in obtained data (the positive 
correlation), but the actual value of predicted miss rate 
corresponds closely to the actual value obtained. Indeed we 
note that all of the six empirical data points were predicted 
within 15% (on an absolute scale; that is, for example 55% 
observed, 40% predicted). Furthermore, four of the data points 
were predicted within 7%. 

 
PREDICTION OF NEXTGEN PERFORMANCE 

 
The validation reported above provided convincing 

evidence that N-SEEV could predict existing off-nominal 
event detection data. From this validation, the next step was to 
make predictions regarding off-nominal detections associated 

with different aspects of NextGen technology. We present 
below a sampling of some of the predicted test model runs and 
their results to examine the implications of different proposed 
NextGen procedures on miss rate (MR) for truly surprising 
(“black swan”), non-salient events at the locations indicated: 
• Uplinking taxi clearances during approach, using an 

electronic flight bag to check taxi routes: Event out the 
window: MR = 0.51, Event on datalink display: MR = 
0.57. 

 
Self-separation responsibility using a cockpit display of 

traffic information (CDTI) located on the Navigation Display 
(ND). Event out the window: MR = 0.62, OW event coupled 
with engine failure management (simulated through cognitive 
tunneling): MR = 0.83. 
 
• Very closely spaced parallel approaches (VCSPA), and 

monitoring specialized VCSPA display on the ND. Event 
on ND: MR = 0.29, Event on EICAS; MR = 0.58. 
 
Miss rate predictions for these and other scenarios can be 

found in Gore et al. (2009).  
 

SUMMARY AND CONCLUSIONS 
 
In summary, this research has shown how a 

computational model of noticing can predict data from highly 
realistic flight simulations, regarding the probability of 
noticing off-nominal events that are either totally surprising 
(“black swans”) or simply unexpected (“grey swans”). The 
model predicted the magnitude of three effects of considerable 
importance to aviation safety: the reduced detection of 
unexpected events, the “attentional tunneling” effects of the 
HITS head down on the instrument panel, and the general 
advantage of detecting rare events in the forward view, rather 
than head down.  

 
To the extent that the model validation shown in Figure 2 

can be trusted, then the extrapolated prediction of the 
implications of NextGen procedures on miss rate may also be 
considered as somewhat valid, and can identify areas of 
potential concern, to be explored by further PIL simulation. 
The model can be adapted to mimic mitigating strategies, such 
as a changing display layout, highlighting events, or reducing 
bandwidth (through automation) of otherwise attention-
demanding channels. Such changes can be predicted to reduce 
the high visual and cognitive workload associated with these 
procedures; and the model can predict the degree of benefit or 
improvement in flight deck safety. This research indicates 
that, even in NextGen airspace, the probability of missing 
“black swan” events is high (MRs > 0.30). Further work is 
needed to develop training, procedures, and display designs to 
support pilots in identifying and responding to these “black 
swan” events.  
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We acknowledge an important limitation of the current 
approach, that arises from the somewhat unusual technique of 
using the meta-analysis data to validate the model in a 
“postdictive” fashion. In particular, our approach could be 
criticized because of the selective set of conditions chosen for 
validation. Why, for example, did we only examine the HITS 
effect for black swans, and the location effect for grey swans? 
We selected these particular levels for comparison because 
they were well populated with data, and therefore provided 
strong, statistically reliable effects; and such effects provide a 
better challenge for model validation, than comparisons in 
which no differences were found.  
 

Future efforts can build upon the approach presented 
herein by undertaking human-in-the-loop research to identify 
where information should be presented to predict noticing 
times to off-nominal events in NextGen scenarios thereby 
turning the black swans of the present research into the grey 
swans of future research. 
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