QulIP Manual

A system for QUick Image Processing
with simple scripts or quips

Jeffrey B. Mulligan, NASA Ames Research Center

Copyright 2009 United States Government as represented by the Administrator of the Na-
tional Aeronautics and Space Administration. No copyright is claimed in the United States
under Title 17, U.S.Code. Other Rights Reserved.

No Warranty: THE SUBJECT SOFTWARE IS PROVIDED "AS IS" WITHOUT
ANY WARRANTY OF ANY KIND, EITHER EXPRESSED, IMPLIED, OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT
THE SUBJECT SOFTWARE WILL CONFORM TO SPECIFICATIONS, ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT
THE SUBJECT SOFTWARE WILL BE ERROR FREE, OR ANY WARRANTY
THAT DOCUMENTATION, IF PROVIDED, WILL CONFORM TO THE SUBJECT
SOFTWARE. THIS AGREEMENT DOES NOT, IN ANY MANNER, CONSTITUTE
AN ENDORSEMENT BY GOVERNMENT AGENCY OR ANY PRIOR RECIPIENT
OF ANY RESULTS, RESULTING DESIGNS, HARDWARE, SOFTWARE PRODUCTS
OR ANY OTHER APPLICATIONS RESULTING FROM USE OF THE SUBJECT
SOFTWARE. FURTHER, GOVERNMENT AGENCY DISCLAIMS ALL WARRANTIES
AND LIABILITIES REGARDING THIRD-PARTY SOFTWARE, IF PRESENT IN THE
ORIGINAL SOFTWARE, AND DISTRIBUTES IT "AS IS."

Waiver and Indemnity: RECIPIENT AGREES TO WAIVE ANY AND ALL CLAIMS
AGAINST THE UNITED STATES GOVERNMENT, ITS CONTRACTORS AND SUB-
CONTRACTORS, AS WELL AS ANY PRIOR RECIPIENT. TF RECIPIENT’S USE OF
THE SUBJECT SOFTWARE RESULTS IN ANY LIABILITIES, DEMANDS, DAMAGES,
EXPENSES OR LOSSES ARISING FROM SUCH USE, INCLUDING ANY DAMAGES
FROM PRODUCTS BASED ON, OR RESULTING FROM, RECIPIENT’S USE OF THE
SUBJECT SOFTWARE, RECIPIENT SHALL INDEMNIFY AND HOLD HARMLESS
THE UNITED STATES GOVERNMENT, ITS CONTRACTORS AND SUBCONTRAC-
TORS, AS WELL AS ANY PRIOR RECIPIENT, TO THE EXTENT PERMITTED BY
LAW. RECIPIENT’S SOLE REMEDY FOR ANY SUCH MATTER SHALL BE THE IM-
MEDIATE, UNILATERAL TERMINATION OF THIS AGREEMENT.

Copyright 2011 National Aeronatics and Space Administration

Table of Contents

1

OVerview i 1
1l ISt OTY o oot e e 1
1.2 First Steps ..ot e e 1

Command Language............................ 2
2.1 Interactive Features......... ..o, 2

211 Prompts ... e 2
2.1.2 Response completioncooiiiiiiiiiiiiiiiiii., 2
2.1.3 Input redirectionc.c.oouiiiiiiiiiiiiiii i 2
2.1.4 TransCriptS. ..o e 2
2.2 MEIUS e e 2
2.2.1 Displaying the menu............ 3
2.2.2 Builtin commands ... 3
2.22.1 Loop controlo 3
2.2.2.2 Generating output........ i 3
2.2.2.3 Interacting with the system.......... 3

2.2.3 Exiting the menu........ 3
2.3 AT UD < 4
2.4 Variables. ... i 4
2.4.1 The variables submenu oo 4
2.4.2 Setting variables. ... 4
243 Using variables....... i i 4
2.4.4 Special variables....... ...)
2.4.5 Numeric variables i 5]
2.4.6 Advanced variable usage........... i 6
2.5 MaCTOS. . e v ettt e 6
2.5.1 Predefined macros. ..o 6
2.5.2 Writing new macrosoiuriiiiiien i 6

Data Objects.................... 8
3.1 DImensions e e 8
3.2 Creating Data Objects ... 8
3.3 SubSCrIPHING ..o e 8

Expression Language 9

Displaying Images............................. 10
5.1 Creating a VIEWeTourt ittt e 10
5.2 Loading a VIewWer...........oouiiiiiiiiiii i 10

5.3 Manipulating viewers i 10

6 ImageFiles................. 11

7 Plotting Data.................................. 12
8 Control Panels........... 13
9 Advanced Graphics............................ 14
10 Interfacing Hardware 15
10.1 Frame grabbers. ... 15
10.1.1 Matrox meteor RGB 15
10.1.2 VAL2 devices. . oo e 15
10.1.2.1 LML BT848. .. e 15

10.1.2.2 Sensoray 811 ..ot 15

10.2 VIdeo Cameras . ..ottt e e e 15
10.3 Analog I/O .. .o 15
10.4 Serial devices 15
10.5 Parallel porto 15
11 Installing QuIP....... 16

Chapter 1: Overview 1

1 Overview

QulP stands for QUick Image Processing, and is also a reference to its scripting language
which allows the user to implement a variety of useful operations with short fragments of
script or "quips."

1.1 History

QulP has been developed continously over a period of several decades, under a series of
flavors of UNIX. The QulP interpreter is a front end for a number of libraries; some of
these are system libraries, such as X Windows and OpenGL for image display, and Motif
for GUI widgets. Other libraries are distributed as part of the QulP package, and provide
support for various specialized functions, including support for a variety of hardware devices,
and psychophysical experimentation. It provides an environment for visual and numerical
computing similar in functionality to Matlab and the like.

The QulP interpreter has its roots in a simple terminal-based system to interactively control
experiments. It was designed to facilitate the interaction and minimize the amount of typing
required of the user. It only gradually grew into a full-fledged programming language, and
still exhibits various shortcomings. At various times, switching to another interpreter (such
as Tcl) was considered, but the loss of some of QuIP’s unique features seemed too high a
price to pay. You can be the judge.

1.2 First steps

Here we present the simplest possible QulP script. Invoke QulP by typing ’quip’ at your
command shell prompt. (QulP command prompts typically end with the string ’> ’; the
top level prompt is ’quip> ’.) Characters typed by the user are appear as user_input.

quip> echo "Hello world"

Hello world

quip>

If you type this example in, you might notice that after the first ’e’ is typed, the interpreter
completes the word ’expressions’, but that the completion disappears as soon as the following
'c’ is typed.

Here is a slightly longer version:

quip> view

quip/view> viewers

quip/view/viewers> new v 300 100

quip/view/viewers> quit quip/view> draw v

quip/view/draw> string "Hello world" 20 20

quip/view/draw> quit

quip/view> quit

quip>

The first command view causes the interpreter to enter a submenu, which is reflected in
the prompt. By convention, submenus are exited with the quit command.

Chapter 2: Command Language 2

2 Command Language

The simplest way to interact with QulP is via the command language.

2.1 Interactive Features

QulP has many unique interactive features.

2.1.1 Prompts
Prompts and prompt suppression

When QulP is waiting for user input, a prompt is printed. Command prompts typically
end in "> ", preceded by a string indicating the menu hierarchy. Parameter prompts are
typically of the form "Enter <parameter description>: ".

Prompts are only printed when QulP is starved for input. So if multiple commands are
entered on a single line, no prompt will be printed before the second command is read.

The fact that commands prompt for missing arguments makes them somewhat
self-documenting. If you forget the number or order of parameters to a given command,
you can simply enter it interactively and note the prompts. The transcripting facility
(LINK) provides a convenient way of recording the results.

2.1.2 Response completion

As you start to type in the name of a command, QulP will complete the word for you if it
can.

2.1.3 Input redirection

You can read the contents of a file by using the ’<’ builtin command. The effect is the same
as if you were to type in the contents of the file, with the exception that commands and
command arguments are not added to the respective history lists.

2.1.4 Transcripts

You can save a transcript of your typing for later re-execution. Usually this is not done
without a bit of editing of the transcript. A common use of this feature is that you are unsure
of what arguments are required for a particular command, so you execute it interactively,
using the prompts as guides for the arguments. Transcripting offers an alternative to paper-
and-pencil notes concerning the order and types of arguments.

A transcript file is started using the >’ builtin command.

2.2 Menus

QulP’s command menus

Commands in QulP are grouped into menus. The menu hierarchy is designed so that all of
the commands in a menu can be displayed on a single screen (i.e., fewer than 20 commands
per menu).

Chapter 2: Command Language 3

2.2.1 Displaying the menu
How to display the current menu

The commands in the current menu can be shown using the command ?. This is a builtin
command, i.e. it is universally available in any menu.

2.2.2 Builtin commands
Commands available from any menu

Some commands are so useful that it is desireable to have them available regardless of the
menu context. These include commands for manipulating variables, loop control, and file
redirection. The complete list of builtin commands can be displayed using the 77 command.

2.2.2.1 Loop control
These commands are useful for creating control structures.

If <condition> <command>
If <condition> Then <command> Else <command>

When an If is encountered, the next word is read and interpreted as a boolean condition
using the scalar expression parser. If the word following the condition is the reserved word
Then, then three words are read, the second of which must be the reserved word Else.

Multi-word commands (or multiple commands) may be executed following an If by enclos-
ing the entire group in single or double quotes. If commands can be nested, but because
the command language does not use braces for grouping, it is often better to write a macro
to encapsulate the predicate of an If statement.

do <commands> while <condition>
repeat <count> <commands> end
foreach <varname> (<wordlist>) <commands> end

These three forms provide for looping. After the loop is opened, commands are read until
the closing word is encountered. Unlike command shells such as (t)csh, the commands are
immediately executed as they are read. When the loop is scanned for the first time, the
commands are saved to a buffer before each one is executed. When the end of the loop is
reached, the condition is evaluated, and when appropriate the stored loop body is pushed
back onto the input.

2.2.2.2 Generating output

Printing messages and warnings

2.2.2.3 Interacting with the system

OS-specific commands

2.2.3 Exiting the menu
Returning to the previous menu

By convention, menus are exited using the quit command. This command is not a builtin, it
is specified individually for each menu. Most menus will use the default menu exit method,
but occasionally it is necessary to perform cleanup actions on menu exit.

Chapter 2: Command Language 4

2.3 Startup

QulP initialization

Before interpreting user input, QulP attempts to read a startup file. QulP looks for a
startup file with the same name as by which the program was invoked, with the .scr (script)
extension added. Thus, the default startup file is named quip.scr. Creating links to the
QulP executable with different names provides a way to produce different behavior on
startup through the use of specialized startup scripts.

QulIP searches for a startup script in the following series of directories: 1) the current direc-
tory; 2) SQUIPSTARTUPDIR (if defined in the environment); 3) $HOME/.quip/startup
(if it exists); 4) the macro installation directory (/usr/local/share/quip/macros/startup).
Options 2 and 3 happen only when the user customizes his or her environment appropriately.

The installation directory used in the last case can be modified during the configuration
process (XREF building).

2.4 Variables

Using script variables

The QulP has a set of string variables that have a usage similar to command interpreters
such as bash and csh.

2.4.1 The variables submenu

Commands to manipulate variables are found in the variables submenu, accessed via the
variables builtin command. The commonly used functions such as setting a variable are
generally invoked via a macro which hides the descent into the submenu.

From the variables submenu, the 1ist command lists the names of all variables. The find
command lists the names of variables containing a given text string, while the search
command lists the names of variables whose values contain a given string.

Other commands are described in the following sections.

2.4.2 Setting variables

Variables are normally set using the Set macro:

Set <var_name> <value_string>

Variable names can be made up of alphanumeric characters and the underscore ’_ .

By convention, normal variable names begin with an alphabetic character, and numeric
variables are reserved for macro arguments. This is not strictly enforced, however. If a
variable with name 1 is created and set to a value, then that will prevent the first macro
argument from being accessed. This is not a good thing.

2.4.3 Using variables

Variable expansion is peformed when lines are read. Variable substitution is triggered by
the dollar sign character $. As in the UNIX command shells, variable expansion is inhibited
by enclosing a string in single quotes, and always performed for strings in double quotes.

Nested quotes can become rather complicated. It is the outermost set of quotes that matter;

In the following example, the variable will be expanded when the line is first read; the text
interpreted after evaluation of the If condition will be echo ’>John is a minor’.

Chapter 2: Command Language 5)

Set name John

Set age 15

If Sage>=18

Then "echo $name is an adult’™
Else "echo ’$name is a minor’"

On the other hand, the quotes could be switched:

If Sage>=18
Then ’echo "$name is an adult"’
Else ’echo "$name is a minor"’

In this case, the text to be interpreted will be echo "$name is a minor". This difference
can become important if such a statement is encountered in a loop in which the value of
the variable changes from one iteration to the next.

Another example where immediate variable expansion must be inhibited is when the variable
may not exist:

If var_exists(test)
Then ’echo "variable test exists and has value = $test"’
Else ’echo "variable test does not exist"’

In this example, the first echo command after the Then must be enclosed in single quotes,
because all of the text is scanned and subjected to variable expansion before evaluation
of the condition. Enclosing the first echo command in double quotes would generate an
undefined variable warning in the case where the variable does not exist, even though the
command will not be executed. This might be considered a design flaw.

2.4.4 Special variables

Some variables are preset by the system. In particular, command line arguments given
when the program is invoked may be accessed as $argvl, $argv2, etc. The may also be
accessed using the abbreviated form used for macro arguments, e.g. $1, $2, etc., but the
longer form is useful inside a macro where the short form accesses the macro arguments.

Scripts may refer to external environment variables, but they are loaded as needed. For
example, HOME will not show up on the initial list of variables, but an attempt to dereference
$HOME will cause the environment variable HOME to be imported if it exists.

Other special variables may be set by particular functions. These are described in the
description of the functions.

2.4.5 Numeric variables

It is not uncommon to use a variable to hold a numeric value. The interpreter functions
which fetch numeric arguments to commands process their arguments through a scalar ex-
pression parser, but sometimes we would like to have the result of the expression evaluation
stored in the variable, instead of the expression. This is accomplished using the Assign
macro. Assign is like Set in that it sets the value of a variable, but it does so after running
the value through the scalar expression parser, and formatting the result as a number. For
example:

quip> Set pi 4*atan(1)

quip> Print pi

pi = 4*atan(1)

Chapter 2: Command Language 6

quip> Assign pi 4*atan(1)
quip> Print pi
pi = 3.141593

Several macros are provided to facilitate the manipulation of numeric variables:

Add_Var <var_name> <number>
Mul_Var <var_name> <number>
Increment <var_name>
Decrement <var_name>

These correspond to the C language operators +=, *=, ++ and --, respectively.

2.4.6 Advanced variable usage

Unlike the UNIX command shells, QulP does not provide for indexing of variables. In part,
that is because QulP uses braces for subscripting data objects, and variables are commonly
used to hold the names of data objects.

QulP does provide, however, a slightly cumbersome way to do indexing via double indirec-
tion:

Set personl Larry

Set person2 Moe

Set persond Curly

Set il

repeat 3

Set var_name person$i

echo "Person $i is $$var_name"
Increment i

end

2.5 Macros

A macro is a block of text that is substituted when the macro name is encountered. Macros
provide one of the primary means of writing compact programs for QulP.

2.5.1 Predefined macros

A number of useful macros are loaded on program startup. (XREF startup file) The pre-
defined macros may be displayed by entering the 1ist command in the macros submenu.

2.5.2 Writing new macros

While the predefined macros may access to the functionality desired by a user, most everyone
will want to combine these building blocks to accomplish specific things. Any group of
commands which is repeated more than once is a candidate for inclusion in a macro.

Macro definitions are begun the the command Define (which is itself a macro, albeit a very
simple one). The syntax is as follows:

Chapter 2: Command Language 7

Define <macro_name> <n_args> | <prompt_specifications>]
<macro_body>

The macro body is terminated by a line containing a single period .. This is the one case
where white space (or the lack of it) is important: this period must be on a line by itself
with no leading white space.

The number of prompt specifications must match the number of arguments specified. Each
prompt specification consists of a prompt string (quoted if it contains spaces), which may be
preceded by an optional object type specifier enclosed in brackets < and >. The purpose of
object type specifiers is to enable reponse completion when a macro is invoked interactively.

Chapter 3: Data Objects 8

3 Data Objects

Data objects are blocks of memory containing data, and a small block of meta-data describ-
ing the object. Data objects can be scalars, vectors, matrices, images, or image sequences.

3.1 Dimensions

Data objects can have up to five dimensions. These are the component dimension or depth,
the row dimension or width, the column dimension or height, the sequence dimension or
number of frames, and hypersequence dimension or number of sequences. (Hypersequences
were introduced to ease compatibility with file formats in which color images are stored as a
sequence of color component frames; in this framework, a color image is a 3-frame sequence,
thus a color movie is a hypersequence of 3-frame sequences.)

3.2 Creating Data Objects

Data objects can be created using the commands in the data submenu.

3.3 Subscripting

Subscripting allows the user to reference parts of an object. For example, if m is a matrix
(image) of real numbers, then m[0] selects the first row of the image, while m{0} selects the
first column.

Chapter 4: Expression Language 9

4 Expression Language

Writing scripts using QulP’s expression language

The command language described in the previous chapter can be cumbersome when writing
complicated image processing operations. Counsider, for example, synthesizing a floating
point sinusoidal grating image, scaling it to the range 0 to 255, and converting it to byte.
In the command language, we would do it with the following script:

‘ Set h 266

Set w 256

Set period 64

Assign two_pi 8*atan(1)
Image £ $h $w 1 float
Image b $h $w 1 u_byte
Ramp2D f 0 $two_pi/Pperiod O
VSin f £

VSAdd £ £ 1

VSMul f £ 255/2

Convert b £’

Here is the exact same thing written using the expression language:

‘ expressions

read -

int h=256, w=256;

int period=64;

float two_pi=8+*atan(1);

float f[h] [w];

u_byte b[h] [w];

f=ramp2d (0, two_pi/period,0);

b = (sin(£f)+1)*255/2;

end

quit’

While the second version is not significantly shorter in terms of characters, it is arguably
easier to read and understand. In the command language, each operation is one command,
while in the expression language multiple operations can be packed into a complex vector
expression.

Chapter 5: Displaying Images 10

5 Displaying Images

Displaying images using QulP viewers

QulP provides a simple interface to the X Windows system to enable display of images.

5.1 Creating a viewer

Creating a new viewing window

5.2 Loading a viewer

Displaying an image in a viewer

5.3 Manipulating viewers

Repositioning and hiding viewers

Chapter 6: Image Files

6 Image Files

Loading and storing images

11

Chapter 7: Plotting Data

7 Plotting Data

Using the plotting macros

12

Chapter 8: Control Panels

8 Control Panels

Using a GUI to control the program

13

Chapter 9: Advanced Graphics

9 Advanced Graphics

Sythesizing images using OpenGL

14

Chapter 10: Interfacing Hardware 15

10 Interfacing Hardware

Modules have been written to allow QulP to control a variety of hardware devices. Most
of these rely on LINUX drivers.

10.1 Frame grabbers

Getting images from analog cameras.

Support is provided for several frame grabbers.

10.1.1 Matrox meteor RGB

The matrox meteor is an older PCI frame grabber that allows capturing of RGB images
via composite or component signals. The component inputs can be used to capture 3
monochrome signals provided that the 3 cameras are synchronized.

10.1.2 V4L2 devices
10.1.2.1 LML BT&848

10.1.2.2 Sensoray 811

10.2 Video cameras

Getting images from digital cameras.

10.3 Analog I/O
Reading & sending signals.

10.4 Serial devices

Devices that communicate via RS232.

10.5 Parallel port
Using the PC parallel port.

Chapter 11: Installing QulP

11 Installing QuIP

This section describes how to build QulP from the source tarball.

QulP can be downloaded from: http://scanpath.arc.nasa.gov/quip

16

Index

Index

C

chapter, first

I

17

	Overview
	History
	First steps

	Command Language
	Interactive Features
	Prompts
	Response completion
	Input redirection
	Transcripts

	Menus
	Displaying the menu
	Builtin commands
	Loop control
	Generating output
	Interacting with the system

	Exiting the menu

	Startup
	Variables
	The variables submenu
	Setting variables
	Using variables
	Special variables
	Numeric variables
	Advanced variable usage

	Macros
	Predefined macros
	Writing new macros

	Data Objects
	Dimensions
	Creating Data Objects
	Subscripting

	Expression Language
	Displaying Images
	Creating a viewer
	Loading a viewer
	Manipulating viewers

	Image Files
	Plotting Data
	Control Panels
	Advanced Graphics
	Interfacing Hardware
	Frame grabbers
	Matrox meteor RGB
	V4L2 devices
	LML BT848
	Sensoray 811

	Video cameras
	Analog I/O
	Serial devices
	Parallel port

	Installing QuIP
	Index

