

Scalable Traffic Management for Emergency Response Operations (STEReO)

PI/Co-PI(s): Joey Mercer (ARC) / Robert Mcswain (LaRC), Corey Ippolito (ARC)

National Aeronautics and Space Administration

AIAA Aviation Conference, June 15 – 19, 2020

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

roots in air traffic control research

UAS traffic management (UTM) project

new paradigm of air traffic management using a distributed network of service providers

clear path forward for multiple areas of research, often overlapping

STEReO

Scalable Traffic Management

NASA's UAS Traffic Management (UTM) System

- access the airspace and coordinate use
- standardized platform for sharing operation information & data

STEReO

Emergency Response Operations

existing challenges include...

- limited communication and infrastructure
- manual coordination to deconflict airspace
- large number low altitude aerial missions (e.g. search and rescue)
- remote sensing data can't be received in a timely manner

To what extent can a STEReO ecosystem

Reduce response times

Provide operational resiliency to dynamic changes during a disaster event

Communications

persistent, interoperable, and expanded allocation of band for tracking UAS operations without burdening existing networks

UTM Services

airspace coordination and management

alleviates workload associated with incorporation of UAS operations

Autonomy mission driven on-board decision making

support mission tasks and safe separation with payload directed flight

Domain Expertise & Tools subject matter experts and stakeholders

collaboration on problem definitions, barriers and solutions

Human Factors

concept and information requirements

distributed virtual collaboration tools that demonstrate the information to action cycle

Targeted use-cases

California wildfire field demonstration

Florida post-hurricane simulation

Connected, adaptive, and autonomous operations

The application of UTM, ad-hoc communication networks, vehicle to vehicle communication, and onboard autonomy to enable airspace management and ensure the safety and resilience of the operations

Distributed Virtual Collaboration

Collaborative tools to ingest data and distribute a common operating picture for all stakeholders for strategic planning and decision-making

Why is STEReO transofmarional?

ADDRESSES RESILIENCY **GAP FOR** UTM/UAM **ECOSYSTEM**

ADVANCES STATE-OF-THE **ART IN ONBOARD AUTONOMY**

FOSTER THE UAS/UTM EXPANSION TO PUBLIC **SAFETY COMMUNITY**

Why Is STEReO "Transformational?"

Who cares?

FAA, UAS industry, Public Safety Agencies, and General Public

Community benefits

- faster recovery
- more situation awareness during disaster

System level benefits

 increases capacity of operations under a restricted airspace (e.g. TFR)

