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Abstract—The paper describes the application of a novel 

analysis technique employing Hidden Markov Models 

(HMMs) to analyze complex sequences of visual fixations 

and understand the supervisory monitoring strategies of 

Space Shuttle cockpit crewmembers. While HMM analysis 

has been shown to be useful for understanding the scanning 

behavior of aircraft pilots engaging in manual flight control, 

it has not yet been applied to the supervisory monitoring 

context. The paper presents a proof-of-concept 

demonstration by applying HMM analysis to the eye-

movement data of a veteran Commander astronaut 

performing simulated ascent-phase operations. The paper 

also demonstrates how the resulting HMM parameters can 

be used to detect deviations from regular scan patterns.

Keywords: Automation, eye movements, Hidden Markov 

Model (HMM), saccades, scan patterns, Space Shuttle 

cockpit displays, supervisory monitoring, visual search.  

1 Introduction 

Operating the Space Shuttle is a complex task; a 

single vehicle functions as a launch rocket during ascent, 

an orbital spacecraft during orbit, and a hypersonic plane 

and subsonic glider during entry and landing. The ascent 

and entry phases are especially critical, and the cockpit 

crewmembers must closely monitor a large amount of 

system-status and navigational information presented on 

various cockpit displays during these phases. 

Understanding how well-trained crewmembers manage to 

efficiently scan critical information during the busiest 

phases of flight is of great interest to NASA human-factors 

researchers. Such knowledge will help improve existing 

astronaut training programs, and also inform the design of 

more human-centered cockpit display systems for next-

generation spacecraft.  

This paper proposes a novel analysis tool based on 

Hidden Markov Models (HMMs) to analyze astronaut 

supervisory monitoring behavior. The basic assumption of 

our HMM analysis is that crewmembers’ eye movements 

(the observation-symbol process) are driven by their 

internal cognitive state, i.e., the specific monitoring task in 

which the crewmember is engaged (the hidden-state 

process). The transitions among the monitoring tasks are 

assumed to follow first-order Markov-process transition 

rules, and the probability distributions of the 

crewmembers’ eye movements are assumed to depend on 

which monitoring task is being performed. The two-layered 

structure of HMMs allows the probabilistic characteristics 

of the scan patterns to dynamically change during flight. 

The inherent flexibility of HMM analysis is a significant 

advantage over other conventional analysis approaches, 

which implicitly assume that the scanning process is 

statistically time-invariant (e.g., calculating simple eye-

movement statistics, such as mean fixation durations or 

frequencies over specific time intervals). In addition, HMM 

analysis hypothesizes that the dependency between the 

internal cognitive process and the observed eye movements 

is stochastic, rather than deterministic. This stochastic 

dependency provides robustness in applying the model to 

the noisy or ambiguous real-world data.  

HMM analysis has been shown to be useful in 

understanding aircraft pilots’ scanning behavior while 

manually flying instrument approaches [1]. These pilots 

were performing concurrent manual tracking tasks along 

multiple axes (i.e., vertical, horizontal, and airspeed axes). 

Pilots are usually taught to frequently crosscheck the 

instruments related to the same tracking axis (e.g., pitch, 

altitude, and glide-slope deviations for vertical-axis 

tracking). Also the aircraft dynamics, the bandwidth of the 

pilot’s inputs, and the bandwidth of disturbance along each 

axis determine how often each set of instruments should be 

scanned [2]. These factors function as a set of external 

constraints on the pilot’s scanning behavior while manually 

controlling a flight. In contrast, with the exception of a 

Figure 1.Space Shuttle MEDS Cockpit (NASA photo) 
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short period of descent prior to touchdown, the tasks that 

the Shuttle crewmembers perform are mostly supervisory 

monitoring of heavily automated processes. Not having to 

manually control the vehicle gives the crewmembers 

considerable liberty in the way they scan the instruments. 

This condition poses additional challenges to the researcher, 

as fewer assumptions about scanning behavior can be made 

for setting the initial model structure. However, we

demonstrate that HMM analysis can be successfully 

applied to the scanning behavior of the crewmembers (with 

some modifications), and can help in understanding their 

supervisory monitoring strategies.   

 The paper presents a proof-of-concept demonstration 

of HMM analysis of the eye-movement data of an 

experienced Commander astronaut collected during part-

task simulations of nominal Shuttle ascent. Selection of the 

hidden states, estimation of the model parameters, and 

cross-validation of the estimated model parameters are 

demonstrated and discussed. The paper also demonstrates 

the use of estimated HMM parameters to identify the 

crewmember’s temporary deviation from regular scan 

patterns. Finally, the potential advantages and limitations of 

HMM analysis are discussed.  

1.1  Monitoring Tasks During Ascent 

 We begin by providing an outline of the Shuttle 

cockpit display systems and the monitoring tasks that 

crewmembers perform during the ascent phase of flight. 

Figure 1 shows the Shuttle glass cockpit called 

Multifunction Electronic Display System (MEDS). The 

MEDS cockpit seats two crewmembers: the Commander in 

the left seat and the Pilot in the right seat. Figure 2 

illustrates the Commander-side display arrangement in the 

MEDS cockpit used in the simulations, along with the 

display name acronyms used in this paper. The HSI/SPD 

(2) and the ADI/ALT (3) are flight displays similar to those 

used in commercial air transporter cockpits. The F2-F3 and 

F6 BTM are switch panels (F2, F3, and F6 are the names of 

the corresponding forward switch panels). The rest of the 

displays (5-12) are shared with the Pilot astronaut in the 

right seat. The three displays (8-10) share one display area, 

and are toggled by keyboard inputs. When neither the BFS 

ASC TRAJ (8) nor the Fault Log (10) is being used, the 

crewmembers usually have the systems status, the BFS 

SYS SUM 1 (9), up on this display.   

 The ascent phase includes several critical events that 

crewmembers must monitor at specific times. Table 1 

summarizes these critical events and the associated 

information that the crewmembers are supposed to monitor, 

as listed in the ascent checklists [3].  

 When not monitoring critical events listed in Table 1, 

the crewmembers scan the displays overall so that they 

remain apprised of system health as well as maintain 

situation awareness. This regular scanning is an important 

task; yet, unlike the critical-event monitoring, there is no 

written protocol describing how this regular scan should be 

performed. Hence, the regular scan patterns were derived 

directly from the actual eye-movement data. 

Table 1. Critical-event monitoring tasks during the ascent phase 

Approx. Mission 
Elapsed Time 

(MET) [min:sec] 

Critical Events What to Monitor 
Display(s) to be Monitored  

(see Figure 2) 

0:01 Launch Digital Autopilot (DAP) Pitch and Roll/YAW switches are still in AUTO. F2-F3 

0:07 Roll Program 
Vehicle rolls to heads-down ascent attitude. Move Attitude switch to 
LVLH (Local Vertical Local Horizontal) position.  

ADI/ALT, BFS ASC TRAJ, F6 BTM 

0:30-1:00 Thrust Bucket 
MPS throttling reduces to 67% to limit max flight dynamic pressure, then 
30 seconds later, comes back to 104%. 

OMS/MPS SUM 

Around 2:00 
Solid Rocket 

Booster (SRB) 
Separation 

(i) Pressure level inside SRB chamber falls below 50 psi, which triggers 
the SRB separation. (ii) Major Mode (MM) changes from 102 to 103. (iii) 
Check that Time to MECO (TMECO) indications on the PASS and BFS 
ASC TRAJ displays converge. 

(i)-(iii) PASS & BFS ASC TRAJ 

Around 3:00 --- Check the flash evaporator temperature is <60°F. Overhead panel 

5:40
Roll to  

Heads Up 
Vehicle rolls to heads-up attitude. ADI/ALT 

8:30
Main Engine 

Cutoff
(MECO) 

(i) MPS thrust level drops to 0%. (ii) MAIN ENGINE STATUS lights 
illuminate red. (iii) Cutoff bug on BFS ASC TRAJ indicates MECO 
velocity. 

i) OMS/MPS SUM, ii) MAIN 
ENGINE STAUS lights (located 
below BFS ASC TRAJ), iii) BFS 

ASC TRAJ 

(8-10) Toggled

(1) F2-F3: Switch panels including Digital Autopilot (DAP) switches 
(2) Horizontal Situation Indicator (HSI) / Speed indicators (SPD) 
(3) Attitude Director Indicator (ADI) / Altitude Indicators (ALT) 
(4) F6 Bottom (BTM): Switch panel including Attitude switch 
(5) Primary Avionics Software System (PASS) Ascent Trajectory
 (ASC TRAJ) 
(6) Orbital Maneuvering System (OMS) / Main Propulsion System
 (MPS) Summary (SUM) 
(7) Caution & Warning Matrix (C/W) 
(8) Backup Flight System (BFS) ASC TRAJ 
(9) BFS System (SYS) SUM 1 
(10) Fault Log 
(11) Guidance Navigation Control (GNC) SYS SUM 
(12) Auxiliary Power Unit (APU) / Hydraulics (HYD) SUM 

Figure 2. Display Arrangement for Commander Side: 

Ascent Configuration 

(1) F2 -F3 

(2) HSI/ 
SPD (8-10)  

see below

(11) GNC
SYS
SUM 

(3) ADI/ 
ALT 

(5) PASS
ASC 
TRAJ 

(6) OMS/
MPS  
SUM 

(12) APU/
HYD 

(4) F6 BTM 

(7) C/W 
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1.2  Hidden Markov Model (HMM) Analysis 

 A brief overview of HMMs follows. (For complete 

descriptions of the HMM algorithms, see [4].) The 

structure of an HMM consists of two layers of stochastic 

processes. The hidden-state process is not directly 

observable and follows first-order Markov process 

transition rules. The observation-symbol process is a 

physically observable process, and has probability 

distributions that depend on the current hidden state. An 

HMM model structure is completely described by a set of 

three model-parameter matrices, = (A, B, ). The state-

transition probability distribution matrix, A(i, j) (1 i, j

N), defines the transition probability from the hidden state, 

i, to the hidden state, j. The observation symbol probability 

distribution matrix, B(j, k) (1 j N, 1 k M), defines 

the probability of the observation symbol, vk, being 

observed given hidden state, j. The initial state probability 

distribution matrix, (i) (1 i N), defines the probability 

that the hidden state, i, is the initial state. Given an 

observation-symbol sequence, O = {o1, …, oT}, and a set of 

initial conditions of the model parameter matrices, 0 = (A0,

B0, 0), the HMM algorithms iteratively calculate the most 

likely sequence of the hidden states, q* = {q1,…,qT}, and 

re-estimate the model parameters, .

 In this HMM analysis, the observation-symbol 

sequence corresponds to the crewmember’s display fixation 

sequence, and the hidden states to the critical-event 

monitoring tasks (listed in Table 1) and the regular-

scanning tasks (determined from the actual eye-movement 

data). Figure 3 illustrates the concept of this HMM 

structure. The diagram in Figure 3 includes the Nc critical-

event hidden states (the circles denoted C1, …, CNc) and the 

Nr regular-scanning hidden states (the circles denoted R1,

…, RNr; Note Nc + Nr = N). Each hidden state has its own 

fixation probability distributions. The arrows indicate 

hidden-state transitions, including recurring transitions to 

the same hidden state. (To avoid cluttering the diagram, the 

two arrows between an individual critical-event hidden 

state and the box around the regular-scanning hidden state 

represent the transitions between this specific critical-event 

hidden state and any of the regular-scanning hidden states.) 

 The diagram in Figure 3 indicates no direct transition 

within the critical-event hidden states. This prevents two 

critical-event hidden states from occurring successively. 

The inhibition of the transitions between any of the two 

critical-event hidden states was implemented as follows: 

First, let the first Nc hidden states, i1, …, iNc, be the critical-

event hidden states, and the remaining Nr hidden states, 

iNc+1, …, iN, be the regular-scanning hidden states. Then, 

the model-parameter matrices could be partitioned into sub-

matrices as in the following equations. The subscript, c,

denotes the critical-event hidden-state class, and the 

subscript, r, the regular-scanning hidden-state class: 

=
rrrc

crcc

AA

AA
A         (1) 

=
r

c

B

B
B             (2) 

[ ]rc=           (3) 

where Axy (x, y  {c, r}, Nx  Ny) is the hidden-state 

transition probabilities from each hidden state of the class, 

x, to each hidden state of the class, y; Bx (Nx  M) is the 

observation-symbol probabilities given each hidden state of 

the class, x; and  x (1  Nx) is the initial state probabilities 

of each hidden state of the class, x. Then, the transitions 

between two critical-event hidden states can be prohibited 

by setting the sub-matrix, Acc, a pure diagonal matrix.  

 The elements of the other sub-matrices of A (i.e., Acr,

Arc, and Arr) generally remain non-zero to allow the 

corresponding hidden-state transitions. However, the non-

zero elements of the Arc sub-matrix may cause problems in 

the estimation of the critical-event hidden states. These 

hidden states were supposed to occur only near the time at 

which the corresponding critical event occurs. Yet, because 

of the non-zero Arc, the HMM may estimate that the 

critical-event hidden state occurred at other times due to the 

occurrence of scan patterns that happened to be similar to it. 

To prevent this type of estimation error, some critical-event 

hidden states were restricted to occur only at specific times. 

For instance, the Thrust Bucket critical-event hidden state 

was associated with the OMS/MPS SUM (6) fixations that 

occurred only between 0:30~1:00 MET. (This was easily 

implemented by adding a new column to the B matrix, 

representing the OMS/MPS SUM (6) fixations observed 

Regular-Scanning Hidden States 

C1
MECO 

Critical-Event Hidden States 

C2
… CNc…

R1 R2

RNr
…

Figure 3. HMM structure for crewmembers’ 

scanning behavior. 
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specifically during 0:30~1:00 MET.) Similarly, BFS ASC 

TRAJ (8) associations to the hidden states were also time 

dependent. Those occurring near 0:07 MET were 

associated with the Roll Program hidden state, those around 

2:00 MET with the SRB Separation hidden state, and those 

around 8:30 MET with the MECO hidden state. The BFS 

ASC TRAJ (8) fixations that occurred at other times were 

associated with some of the regular-scanning hidden states.  

 As mentioned previously, regular scanning is an 

important task, and researchers may wish to know when 

and how long the crewmember’s scan patterns deviated 

from it. Such information may help, for instance, in 

training astronauts to maintain a proper scan, or in 

developing a cockpit display system that facilitates the 

crewmembers’ regular scanning. The HMM sub-model 

parameters, r = (Arr, Br, r), represent a reduced HMM 

structure that specifies how fixations occur during regular 

scanning. (The elements of the Arr and r matrices must be 

re-normalized so that j[Arr(i,j)]= 1, and i[ r(i)] = 1.) 

This reduced HMM structure can be used to detect 

deviations of the crewmember’s fixation sequence from the 

nominal scan patterns. The Viterbi algorithm [4] is a 

dynamic programming algorithm that computes the most 

likely sequence of the hidden states given a particular 

observation sequence, O, and particular HMM model 

parameters, . During this computation process, the 

algorithm also computes the probability, P*, of observing 

that fixation sequence given those model parameters, which 

could be useful for our purpose. (The P* values were also 

used in the cross-validation process of the estimated model 

parameters—see Section 3.2.) To detect deviations from 

the nominal scan patterns, the most recent  consecutive 

fixation data from each time point were subjected to the 

Viterbi algorithm with the reduced model parameters, r, to 

compute continuous P*(t). When the most recent  fixation 

data points indicated deviation from the nominal scan 

patterns, the Viterbi algorithm returned lower P* values.  

2 Simulation 

 A fixed-base, part-task Shuttle cockpit simulator at 

NASA Ames Research Center was used to conduct the 

ascent-phase operation simulation and collect eye-

movement data. The simulator was configured to replicate 

the Commander-side seat environment of the Shuttle 

MEDS cockpit. Four 20” touch-screen LCD monitors in 

front of the operator provided eight displays on the front 

panel as shown in Figure 2. Two 20” touch-screen LCD 

monitors on the left, three on the right, and two overhead 

were used to simulate switch panels. To the right of the 

participant’s right knee, a 12” touch-screen LCD monitor 

was placed to simulate a keyboard. A network of seven PCs 

and an SGI Octane was used to compute the Shuttle’s flight 

dynamics and the display output. The flight dynamics, 

system parameter tables, and engine sound were obtained 

through NASA Johnson Space Center. The display 

graphics were generated using VAPS, OpenGL
®

, and 

winGDI.  

 The simulation included operations from launch to 

MECO, approximately 8.5 minutes in duration. Within the 

four trials conducted, the first and fourth were nominal 

trials, and the second and third were off-nominal trials, 

which contained some simulated system malfunctions. The 

data from the two nominal trials were used to estimate the 

HMM model parameters. The data from the third trial (off-

nominal) were used for identification of the participant’s 

deviation from the regular scan patterns. The system 

malfunction inserted in the third trial was a low ullage 

pressure condition in the liquid hydrogen external storage 

tank, which occurred at 1:55 (115 sec) MET. The data from 

the second trial were not used in this paper.  

 The participant was a veteran Commander astronaut. 

Before data collection trials started, the participant 

performed practice trials in the simulator. During the data 

collection trials, the participant’s eye-movement data (i.e., 

lines-of-sight data) were collected at 60 Hz with a head-

mounted eye camera (ISCAN ETL-500, ISAN, Inc., 

Burlington, MA) and head tracker (FasTRAK, Polhemus, 

Colchester, VT). The participant’s switch-throw activities 

were also recorded. Each trial was also videotaped.  

 The intersections of the participant’s lines-of-sight 

and the display surfaces were computed from the data. 

Then, saccades were eliminated by omitting points where 

the running averages of the intersections failed to meet our 

fixation criteria (i.e., staying within a circle of a 3/4-inch 

radius on the monitor surface for at least 150 msec). Each 

remaining saccade-free data point was assigned to a display 

area based on its location, and if the duration within a 

display area was less than 0.5 seconds, it was counted as a 

single fixation. Longer durations were assigned to be 

multiple consecutive fixations at the same display area, by 

limiting the maximum duration of each additional fixation 

to be 0.5 seconds (e.g., if a duration was 0.3 seconds, it was 

counted as one fixation; if 0.6 seconds, two fixations; if 1.2 

seconds, three fixations; etc.). The resulting sequences of 

fixations were used for the display fixation transition 

probability computations and the HMM analysis.  

3 Results 

3.1 Selection of Hidden States 

 While the critical-event hidden states were selected 

based on the ascent checklists, the regular-scanning hidden 

states had to be derived from the actual eye-movement data. 

The fixation transition probabilities among displays were 

computed to identify patterns in the regular scanning and 

select regular-scanning hidden states.  

 Analysis revealed very frequent eye traffic between 

the HSI/SPD (2) and the ADI/ALT (3) displays (transition 
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probabilities given the origin displays: 49.2% for the 

HSI/SPD (2) to the ADI/ALT (3); 58.4% for the opposite 

direction). Both of these displays provide primary flight 

instrument information. Thus, in the following HMM 

analysis, the pair of these displays constitutes the Flight 

Instruments hidden state.   

 Relatively heavy eye traffic was also observed 

between the OMS/MPS SUM (6) and the BFS SYS SUM 1 

(9) (29.9% for the OMS/MPS SUM (6) to the BFS SYS 

SUM 1 (9); 35.3% for the opposite direction). Both include 

system information, and, thus, these displays were assigned 

to be the System hidden state. In addition, this System 

hidden state was also chosen to include other system-

information displays, which were fixated much less 

frequently: the C/W (7), the GNC SYS SUM 1 (11), the 

APU/HYD (12), the overhead panel, and the left and right 

switch panels.  

 The analysis also indicated relatively large transition 

probabilities to the PASS ASC TRAJ (5) from all the major 

displays (i.e., the HSI/SPD (2), the ADI/ALT (3), the 

OMS/MPS SUM (6), and the BFS SYS SUM 1 (9) (ranged 

between 18.4~27.7%)). The PASS ASC TRAJ (5) also 

showed almost uniformly distributed transition 

probabilities to all of these major displays (ranged between 

17.0~24.4%). This pattern strongly indicates that the PASS 

ASC TRAJ (5) worked like a hub. The major pieces of 

information the PASS ASC TRAJ (5) presents are Time to 

Main Engine Cutoff (TMECO), the abort options, the MET, 

and the Major Mode (MM), which are all related to overall 

mission situation awareness (SA). Therefore, the PASS 

ASC TRAJ (5) display was assigned to the Mission SA 

hidden state.  

 Occasionally, the participant fixated on the F2-F3 (1) 

during flight, presumably to check the Digital Autopilot 

(DAP) status. Thus, a DAP check hidden state was also 

included in the regular-scanning hidden states. Finally, to 

make the list complete, a BFS Traj/Fault Log Check hidden 

state was added to include fixations of the BFS ASC TRAJ 

(8) and the Fault Log (10), the displays only rarely fixated 

during regular scanning. 

 Figure 4 illustrates the HMM structure derived from 

the fixation transition probability analyses described above. 

Table 2 summarizes observations associated with each 

hidden state in Figure 4. In Figure 4, the three major 

regular-scanning hidden states (i.e., Flight Instruments, 

Mission SA, and System) are depicted as shaded circles 

with thick transition arrows. These three major hidden 

states occurred much more frequently than the remaining 

two regular-scanning hidden states, and thus were 

dominant during the regular scanning process. Note that 

some critical-event hidden states were omitted to improve 

computation efficiency. The Launch critical event hidden 

state was not included in this HMM structure; the DAP 

check required at launch was detected as a part of the DAP-

Check regular-scanning hidden state, instead. Also, critical-

event hidden states for the flash evaporator temperature 

check at 3:00 MET and for the ADI check for the roll-to-

heads-up at 5:40 MET were not included, because these 

fixations do not yield distinguishable scan patterns, such as 

frequent crosscheck with other displays or extremely long 

fixation durations on specific displays. Instead, these 

scanning behaviors were identified as a part of the System 

or Flight Instrument regular-scanning hidden states.  

 Also notice that the Flight Instruments hidden state in 

Table 2 includes the F2-F3 (1) in addition to the HSI/SPD 

(2), the ADI/ALT (3), and the F6 BTM (after 0:20 MET). 

This was done because the F2-F3 (1) switch panel was 

located very close to the HSI/SPD (2) and the ADI/ALT (3), 

and, therefore, some of the fixation points on the HSI/SPD 

(2) or the ADI/ALT (3) could be accidentally classified into 

Mission SA

Flight
Instruments System 

BFS T/F
Check

DAP 
Check 

Regular-Scanning Hidden States 

Roll 
Program 

Thrust 
Bucket 

SRB
Sepa-
ration

MECO 

Critical-Event Hidden States  

Figure 4. HMM structure for  

the participant’s scanning behavior 

Table 2. HMM structure details 

Hidden States Class Observations 

Roll Program c 
ADI, BFS ASC TRAJ, F6 BTM (MET < 
0:20) 

Thrust Bucket c OMS/MPS (0:30  MET < 1:00) 

SRB 
Separation 

c
PASS ASC TRAJ, BFS ASC TRAJ (MET ~ 
2:00) 

MECO c
OMS/MPS SUM, BFS ASC TRAJ (MET ~ 
8:30), HSI/SPD 

Flight 
Instruments 

r
F2-F3, HSI/SPD, ADI/ALT, F6 BTM (MET 

0:20) 

Mission SA r PASS ASC TRAJ 

System r 

OMS/MPS (MET < 0:30 or MET  1:00), 

C/W, BFS SYS SUM, GNC SYS SUM, 
APU/HYD, overhead switch panel, left 
switch panel, right switch panel 

BFS Traj/Fault 
Log Check 

r
BFS ASC TRAJ (MET not around the SRB 
Separation or MECO), Fault Log 

DAP Check r F2-F3 
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the adjacent F2-F3 (1) area. However, by allowing the data 

within the adjacent area to be accounted for by the Flight 

Instruments hidden state with a relatively smaller weight 

(i.e., the corresponding element in the B matrix), the effects 

of the misclassifications can be reduced. This soft-

bordering capability is one of the advantages of HMM 

analysis and will be discussed later. 

3.2 HMM Analysis Results 

 Based on the above-mentioned HMM structure, the 

HMM algorithms [4] were run to estimate the maximum-

likelihood model parameters given the participant’s 

fixation sequence data. Two sets of HMM parameters were 

estimated from the fixation data collected during two 

nominal trials: #1 was estimated with the fixation sequence 

from trial #1, and #4 with the sequence from trial #4. To 

determine which set of the model parameters represents the 

participant’s scanning behavior better, a cross-validation 

was performed by computing the degree to which #1 could 

describe the fixation sequence of trial #4 and the degree to 

which #4 could describe the fixation sequence of trial #1. 

The Viterbi algorithm was used to compute the probability, 

P*, of the observed fixation sequence assuming the given 

model parameters. In this cross-validation, #1 yielded 

higher P* with the trial #4 fixation data than #4 did with 

the trial #1 fixation data. Thus, the model parameters, #1,

were considered a better description of the participant’s 

data than #4, and #1 is used in the following 

demonstrations. Figure 5 shows time plots of the fixation 

sequence from trial #4 along with the hidden-state 

sequence estimated using the model parameters, #1.

3.3 Deviations from Regular Scanning 

 From #1, a reduced set of model parameters, r = (Arr,

Br, r), which included only the regular-scanning hidden 

states, was extracted. Then, again, the Viterbi algorithm 

was applied to r and the last  consecutive fixation data 

points from each time point to compute P*(t) (  = 30, 

approximately equivalent to 15 seconds, was used in this 

study). As mentioned previously, if the Viterbi algorithm 

returns low values of the probability, P*(t), at time, t1, that 

indicates that the  fixation data points immediately prior to 

the time point, t1, could not be described well by the given 

HMM structure containing only the regular-scanning 

hidden states. Figure 6 shows time plots of the logarithms 

of the resulting probabilities, log P*(t). (Natural logarithms 

of P*(t) were taken because the values of P*(t) were very 

small.) The top and middle plots were computed with the 

fixation sequence from the nominal trials #1 and #4, 

respectively. Indeed, the plots show clear reductions of log 

P*(t) around the critical event times, where the scanning 

behavior should deviate from the regular-scanning patterns.  

 An analogous computation with the same model 

parameters, r, was applied to the fixation sequence from 

the off-nominal trial #3, where a system malfunction 

occurred at 1:55 (115 seconds) MET. This result is plotted 

at the bottom of Figure 6. The plot indicates that the 

participant deviated from the regular scan patterns a couple 

of times after the malfunction occurrence. Actually, the 

participant correctly completed the malfunction 

management procedure by 2:35 (155 sec) MET, but, even 

after that, still kept staring at the right panel for a long time. 

(The voice recording on the videotape indicated that the 

participant was trying to make sure all the switch positions 

on the right panel were correct.) Therefore, the first dip in 

Figure 6, around 150 sec MET, was for correcting the 

malfunction, and the following two dips (around 215 sec 

and 270 sec MET) were caused by the participant staring at 

the right panel.  

4 Discussion 

 In this proof-of-concept study, an HMM structure for 

the participant’s supervisory monitoring scanning behavior 

was derived. The major differences of this HMM structure 

from those in the aircraft pilots’ scanning behavior study in 

[1] were that the hidden states had two classes—critical-

event monitoring and regular scanning—and that a portion 

of the A matrix and the set of the observation symbols were 

modified to reduce the estimation errors of the time-

specific critical-event hidden states. Due to the lack of 

formal validation, the results of the present study should be 

considered preliminary. However, the original purpose of 

this study was to demonstrate a proof of concept and to 

illustrate potential advantages and limitations of HMM 

analysis for future use, and the study successfully met these 

intended goals. We now turn to a discussion of some of the 

advantages and limitations of the HMM analysis approach.  

 One of the major advantages of HMM analysis, as 

pointed out in [1], arises when information sampling from a 

single display can be associated with more than one hidden 

state. For instance, the ADI was associated with both the 

Roll Program and the Flight Instrument hidden states. 

Because HMM analysis takes into account the displays that 

were fixated both before and after the current display, 

fixations associated with one state or the other can be 

disambiguated. 

 Another advantage of the HMM approach is the 

capability for data soft-bordering. For instance, the F2-F3 

(1) fixations were included in the Flight Instruments hidden 

state with relatively smaller weights, so that some data 

misclassified into this area adjacent to the HSI/SPD (2) and 

the ADI/ALT (3) could still be correctly identified as part 

of the Flight Instrument hidden state. This soft-bordering 

capacity of HMM analysis gives the analysis robustness 

and is expected to be increasingly helpful in future research 

on more complex electronic multifunctional cockpit 

displays. Such displays tend to present many pieces of 

information in one display region, and, consequently, 

defining borders between each data cluster associated with 
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each piece of information will be more and more difficult. 

However, because of the soft-bordering capacity, HMM 

analysis can be more forgiving of potential data 

misclassifications.  

 The study also demonstrated the ability of HMM 

analysis to automatically detect deviations from regular 

scanning patterns. The computation can be run in real-time 

with a small delay. Thus, in addition to display studies, 

HMM analysis also may provide interesting applications 

for astronaut training. For example, instructors may be able 

to tell when their trainees interrupted regular scanning of 

the instruments. While this paper used a 15-second delay, 

shorter delays also could be used if desired.  

 In addition to the various advantages, the study also 

revealed limitations of any analysis based purely on eye 

movements. Any analysis (including HMM) that relies on 

the existence of patterns in eye-movement data cannot 

identify hidden states that do not yield unique, detectable 

patterns (such as the hidden states associated with the flash 

evaporator check or the roll-to-heads-up check). While this 

may seem obvious and mostly a philosophical issue, it is 

important to note that behavior-based techniques cannot 

distinguish underlying cognitive states that produce 

identical behaviors. Thus, it is possible that some 

crewmembers may have additional hidden states that 

cannot be directly identified from their eye-movement data 

because the associated scan patterns are too similar to those 

associated with other hidden states. HMM analysis is still 

useful, but care should be taken in interpreting the results.  

 Nonetheless, HMM analysis still appears to have the 

potential to provide advantages over conventional scanning 

behavior studies, which typically rely on simple statistical 

analyses of raw eye-movement data. HMM analysis can 

supplement these eye-movement data statistics with the 

additional information provided by the hidden-state process, 

which is more directly related to the crewmembers’ 

cognitive process. The organizations of the resulting HMM 

structures themselves also provide useful information about 

the basic scanning strategies of the crewmembers. These 

additional measures provided by HMM analysis can be 

useful in the future investigation of the effects of various 

proposed cockpit display designs for the next-generation 

spacecraft or for relating the various skill levels of the 

crewmembers to their scanning behavior.  

5 Conclusion 

The paper has described a novel HMM analysis to 

investigate the scanning behavior of Space Shuttle 

crewmembers. A proof-of-concept demonstration identified 

several potential advantages of using HMM analysis for 

human-centered cockpit interface design or for evaluating 

individual crewmembers’ skill levels based on their scan 

patterns. First, the flexibility of HMM analysis allows 

analysis of complex cases, in which a display or displays 

overlap among multiple hidden states. Second, the 

robustness of HMM analysis also can alleviate the 

requirement of enforcing exact borders between areas 

associated with different pieces of information. Third, the 

estimated HMM model parameters can be used to detect 

deviations from crewmembers’ regular scan patterns. This 

technique could be useful in astronaut training programs. 

Fourth, the additional measures obtained by HMM analysis 

have the potential to provide further insight into 

crewmembers’ scanning strategies.  
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