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Controller workload, recognized as a significant bottleneck to capacity increase in the future National Airspace 
System, has been researched extensively in air traffic management. Unfortunately, subjective workload has been an 
unreliable predictor of a controller’s ability to safely manage the traffic, leading to attempts at replacing workload 
with more objective metrics, such as task load (e.g. number of clearances) and traffic density (e.g. aircraft count). A 
significant caveat in substituting these metrics for workload ratings, however, is that their relationships are non-
linear. More specifically, as traffic increases linearly, controller’s perceived workload remains relatively constant 
until the traffic and associated task load reach a critical threshold. From this point, the workload increases at a much 
faster rate with each added aircraft. In an informal “traffic load test”, researchers at NASA Ames Research Center 
manipulated the aircraft count in real-time human-in-the-loop simulations to determine the maximum traffic level at 
which the controllers reported the traffic to be no longer manageable. As hypothesized, traffic scenarios that were 
rated as moderate workload quickly became unmanageable with few additional aircraft. Feedback from the 
controllers further supported the non-linear nature of subjective workload. Task load data partially supported the 
above findings but the results were inconclusive due to differences in findings between various task load metrics. 
The non-linear relationship between subjective workload and aircraft count has been further examined using data 
from Free Maneuvering concept feasibility study in June 2004. The results showed a step-function relationship 
between workload and aircraft count, suggesting that controllers perceive workload as categorical. The combined 
results suggest that any estimation on workload should not be extrapolated linearly from a set of workload measures 
taken from an experiment since the extrapolated workload is likely to significantly underestimate workload. 
 

Introduction 
 

Controller workload has been a focal topic in air 
traffic management research (e.g. Stein 1985, 
Athenes, Averty, Puechmorel, Delahaye, and Collet, 
2002). It is considered to be a key limiting factor to 
capacity increase in future air traffic operations. 
However, subjective workload has many undesirable 
characteristics. First, workload ratings have shown to 
have significant individual differences, making them 
difficult to be used as a reliable metric that can be 
generalized to different sectors and controllers. 
Furthermore, while objective metrics can be derived 
from traffic and sector characteristics, workload 
ratings are derived only after controllers work the 
traffic, making them difficult to be used as a 
predictive metric that can prevent future traffic 
overload. 
 
One potential solution to this problem is to replace 
subjective workload with correlated objective 
metrics, such as peak aircraft count, traffic geometry, 
total time in sector, number of clearances, etc. A 
general approach to solving this problem is to first 
identify factors that are likely to correlate with 
workload. Then multivariate linear regression models 

are fitted to the observed data, followed by an 
elimination of factors that contribute little to the 
overall workload prediction. From these types of 
analyses, peak aircraft count has generally emerged 
as one of the best predictors of workload (e.g. 
Manning, Mills, Fox, Pfleiderer, Mogilka, 2001). 
 
Most of these analyses assume linear correlation 
between workload ratings and objective metrics. This 
assumption seems to run counter to the subjective 
experience of workload. Controllers often report a 
low to moderate level of workload for a seemingly 
busy traffic but report much higher workload with 
few added tasks and/or minor off-nominal events 
once a certain traffic level is reached. In general, 
there seems to be a non-linear relationship between 
workload and objective metrics. A controller may 
perceive the workload to be low until the traffic and 
associated task load reach a critical point, after which 
s/he perceives the workload to be high.  
 
We examined the non-linearity of workload using 
data that was collected during an informal “traffic 
load test” which established the maximum traffic that 
a controller can handle with advanced decision 
support tools. Despite the informal nature of the 



study, the data provide some evidence and insight 
into the relationship between workload, aircraft 
count, and other task load metrics. 
 

Method 
 

Participants 
Two certified professional air traffic controllers and 
two retired controllers/ supervisors participated in the 
study.  
 
Tool Capabilities 
Advanced air and ground-side decision support tools 
(DSTs) were integrated with Controller Pilot Data 
Link Communication (CPDLC) and the Flight 
Management System (FMS). This integration allows 
the controllers and the pilots to exchange 4-D 
trajectory information quickly and with low 
workload. The controller DSTs have been integrated 
into a high fidelity emulation of the Display System 
Replacement (DSR) controller workstation. In this 
study, all aircraft were equipped with CPDLC, FMS, 
and automatic dependent surveillance-broadcast 
(ADS-B).  
 
Airspace 
The simulation airspace included portions of 
Albuquerque Center (ZAB), Kansas City Center 
(ZKC), Fort Worth Center (ZFW), and Dallas-Fort 
Worth TRACON (Figure 1). Arrivals transitioned 
Amarillo high and Wichita Falls high from the 
northwest and Ardmore high from the north. The two 
main streams of arrivals merged at the BAMBE 
meter fix in the Bowie low sector. The traffic mix in 
Amarillo consisted of arrivals and overflights in level 
flight. A significant portion of Wichita Falls traffic 
was arrivals while Ardmore had arrivals, departures, 
as well as a significant number of overflights. 
 

 
Figure 1. Simulated airspace 

 
 

Procedure 
The “traffic load test” was conducted to determine 
the maximum traffic levels that a controller can 
handle in each of the high altitude sectors. Each 
simulation run consisted of 30 – 40 minute traffic 
scenario, in which the traffic gradually increased 
during the first fifteen minutes and then sustained for 
the rest of the run. Ten versions of each traffic 
scenario were generated per sector. The aircraft count 
was varied at the peak traffic by an increment of two. 
 
Each sector – Amarillo, Ardmore, and Wichita Falls 
– was tested one at a time. Each controller participant 
was paired up with a supervisor who doubled as a 
support controller who handled the surrounding 
traffic that entered or exited the test sectors. The 
controller participants simultaneously worked the 
same sector in separate parallel simulated airspaces. 
The controllers were given a briefing about the 
purpose of the study and were given training to 
familiarize themselves with the tools, traffic 
scenarios, and the overall procedures. After two days 
of training, the participants and the researchers 
discussed the definition of “unmanageable” traffic to 
arrive at a consensus on a common definition prior to 
starting the data collection runs. 
 
For the data collection runs, a traffic level was picked 
based on the amount of traffic that was effectively 
handled during the training sessions. After working 
the traffic at the initial traffic level, the controller 
participants and the supervisors discussed and came 
to a group consensus on the traffic level with respect 
to their ability to effectively control the traffic. If 
they thought that the traffic was below the maximum 
traffic level, they worked another traffic scenario that 
increased the aircraft count by four, and then 
evaluated the new traffic scenario. If they thought the 
new traffic level was unmanageable, the aircraft 
count was decreased by two. The decision process 
repeated until the maximum traffic level was 
established for that sector. If the traffic was 
impossible to work, they had the option to stop the 
simulation run at any time. This procedure was 
modeled after the staircase method of establishing 
thresholds in psychophysical measurements 
(Cornsweet, 1962). 

 
Results & Discussion 

 
Definition of “Unmanageable” Traffic 
After the training and prior to data collection, 
participants were asked what they would consider as 
“unmanageable” traffic. Surprisingly, there was a 
remarkable agreement among the participants in their 
assessments. They generally agreed that traffic 



becomes unmanageable once they lose their 
situational awareness of the traffic situation. They 
also described this as losing the “flick”. They 
described having the “flick” as having the “picture” 
or a plan. When they have the “flick”, traffic is 
managed proactively to provide service rather than 
reactively to avoid conflicts. They felt that once they 
lost the “flick”, safety was already compromised 
even if it did not result in any operational errors.  
 
Some of the potential indicators that a controller is 
near the maximum traffic level are: 

• handoffs are late 
• can’t find check-in flights easily 
• reactive instead of proactive traffic control 
• don’t know where the planes are 
• situation startles you 
• service goes out the window 

 
One controller remarked that when the traffic reached 
unmanageable levels during the training, he was 
startled to “see” an aircraft for the first time, heading 
for another plane in the middle of his sector. Luckily, 
the planes were separated by altitude but it would 
have resulted in a separation loss otherwise. 
 
They also commented that near the maximum traffic 
level, a controller might feel that s/he is fine but one 
more problem – even something as simple as an 
altitude request – may put him/her “down the tubes”. 
Supervisors commented that part of their job is to 
recognize when a controller might have reached 
his/her workload threshold so that they can provide 
relief or help before the person goes “down the 
tubes.” They utilize the controller’s body language, 
speech, etc., as cues for help. 
 
Aircraft Count 
The controllers worked various traffic levels during 
the training, which allowed them to quickly converge 
on the maximum traffic levels during data collection. 
As hypothesized, a small change in the aircraft count 
had a significant impact on the controller workload 
when the traffic was near the maximum. 
 
For Ardmore and Wichita Falls sectors, three levels 
of workload – moderate, maximum, and 
unmanageable – were reported during data collection. 
As shown in Figures 2 and 3, the number of 
controlled aircraft was very similar between the 
scenarios reported as moderate and maximum levels 
of workload. The peak aircraft count was slightly 
higher in scenarios that the participants reported as 
unmanageable workload.  
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Figure 2. Controller-owned aircraft in Ardmore 
 
The difference in aircraft count from moderate to 
unmanageable workload was relatively low – i.e. 
between 4 to 5 aircraft – suggesting that workload 
measurements were sensitive to minor changes in 
aircraft count. For the Ardmore sector, the average 
aircraft count during the ten minute peak was 17.2, 
19.9, and 22.7 aircraft for moderate, maximum, and 
unmanageable workload, respectively. For the 
Wichita Falls sector, the average was 15, 14.7, and 
18.7 for moderate, maximum, and unmanageable 
workload, respectively.  
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Figure 3. Controller-owned aircraft in Wichita Falls1 
 
It is unclear why the moderate and maximum traffic 
levels had similar aircraft count in Wichita Falls 
sector. The task load data showed that controllers 
accepted more handoffs (four) and issued more 
clearances (3 – 11) in the maximum traffic scenario, 
suggesting that there were some measurable 
differences between the two scenarios. Further 
analysis is needed to understand the discrepancies 
                                                      
1 Due to data logging problems, aircraft count was 
logged at every five minutes for this sector. 



between task load and aircraft count in this sector. 
 
Figure 4 shows the number of aircraft controlled in 
unmanageable and maximum traffic scenarios in 
Amarillo sector. The maximum and unmanageable 
traffic had 21 and 23 aircraft during the peak ten- 
minute duration, respectively. 
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Figure 4. Controller-owned aircraft in Amarillo  

 
Unfortunately, moderate traffic scenarios were run 
during training and not during data collection in this 
sector. Similar to Ardmore and Wichita Falls sectors, 
controllers reported a relatively moderate workload 
during training for traffic scenarios slightly below the 
threshold traffic, suggesting that workload increased 
from moderate to unmanageable with few additional 
aircraft. 
 
Although the data suggest that a large change in 
perceived workload resulted from a small change in 
aircraft count, they do not directly demonstrate non-
linearity in workload. However, a subsequent DAG-
TM study demonstrated the non-linearity more 
directly. Figure 5 shows a non-linear relationship 
between workload and aircraft count in Amarillo high 
sector. During the DAG-TM study, controller 
participants reported their workload every five 
minutes during the simulation runs using a Workload 
Assessment Keyboard (WAK) on a scale of 1 to 7 
(Stein 1985). In four simulation runs that contained 
maximum traffic levels, workload ratings were 
correlated with peak aircraft count at each five 
minute interval. As shown in Figure 5, reported 
workload was low for aircraft count up to 16 and then 
quickly ramped up to high workload from 16 to 22 
aircraft. An S-curve, estimating a step function in 
workload from low to high, provided a best fit to the 
observed data when compared to a linear or an 
exponential regression line/curve (a complete 
analysis is in Lee, submitted).  
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Figure 5. Workload vs. aircraft count: observed and 
regression fits for Amarillo High 

 
Task Load 
Controller workload was also compared to various 
task load metrics. A non-linear relationship between 
workload and task load would imply that small 
changes in task load would result in large changes in 
workload. While some of the data supported this 
hypothesis, others were inconclusive. 
 
Task load metrics were divided into three main 
categories: handoffs, clearances, and monitoring 
tasks. The results of the two controller participants’ 
performance were kept separate due to some 
interesting individual differences. Although task load 
analyses were done for all three sectors, we will 
focus mainly on Ardmore results in this paper due to 
space limitations and selectively bring in results from 
the other two sectors as needed. Overall, the pattern 
of results was similar for Ardmore, Amarillo, and 
Wichita Falls. 
 
The number of handoffs that a controller accepts 
from an upstream sector and initiates to a 
downstream sector is directly related to number of 
aircraft in their sector. Figure 6 shows that for 
Ardmore sector, both controllers handled a nearly 
identical number of aircraft, and the number of 
handoffs initialized/accepted was, on average, 58, 72, 
and 80 for moderate, maximum, and unmanageable 
workload, respectively. For Wichita Falls, they were 
61, 73, and 77 and for Amarillo, they were 69 and 73 
for maximum and unmanageable workload. In all 
three sectors, the increase in the number of accepted 
handoffs between each traffic level were quite small 
(2 – 5), confirming that number of aircraft that the 
controllers worked were quite similar between 
moderate, maximum, and unmanageable traffic 
scenarios. 
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Figure 6. Number of handoffs initiated and accepted 

for Ardmore sector 

 
The number of clearances that a controller issues may 
be a better indicator of controller workload since it 
addresses not only the traffic volume but also the 
traffic complexity. If an aircraft flying through a 
sector does not increase the sector traffic complexity, 
controller may not need to issue any clearances to the 
aircraft. Figure 7 shows a number of speed and route 
clearances that were data linked to the flight deck, as 
well as the number of altitude clearances issued by 
voice. There were additional speed and vector 
clearances by voice that were not analyzed and 
therefore excluded in this analysis. However, over-
the-shoulder observation confirmed that there were 
very few voice-issued vectors or speed clearances 
due to easy uplink of speed and 4-D route clearances 
via data link using advanced DSTs. 
 
Although aircraft count data indicated a similar 
number of controller-owned aircraft in moderate and 
maximum traffic scenarios (see Figure 2), the number 
of clearances were greater in maximum (32 for 
controller 1; 40 for controller 2) than in moderate 
traffic (22 for controller 1; 32 for controller 2). 
Therefore a large increase in controller workload 
between moderate and maximum scenarios may be 
better explained by the number of clearances than by 
the aircraft count. However, a lack of distinct 
difference between the number of clearances in the 
maximum and unmanageable traffic scenarios limits 
its ability to fully explain its relationship to workload. 
In addition, the clearance data from Wichita Falls and 
Amarillo sectors did not duplicate the above results, 
showing only a modest increase in the number of 
clearances (1 – 5) between different traffic levels in 
all but one instance.  

0

15

30

45

M
od

er
at

e

M
ax

im
um

U
nm

an
ag

ea
bl

e

M
od

er
at

e

M
ax

im
um

U
nm

an
ag

ea
bl

e

Controller 1 Controller 2

C
le

ar
an

ce
 C

ou
nt Speed

Route

Temp altitude

Altitude

 
Figure 7. Number of speed, altitude, and route 

clearances for Ardmore sector 

 
Controllers also engaged in various monitoring tasks. 
Most of the monitoring tasks were not recorded by 
the data collection system, but the ones that were 
logged show an interesting individual difference 
between the two controllers. Figure 8 shows the 
number of times the controller participants toggled or 
adjusted the data tags, displayed FMS routes, and 
displayed J-ring around the targets.  
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Figure 8. Number of tasks associated with monitoring 

for Ardmore sector 

Data tag toggles and adjustments were often used as 
memory aids to let the controllers visually 
discriminate between aircraft that have been handed 
off, need to be attended to, etc. Display of FMS 
routes allowed them to verify where the planes were 
going, especially since the airspace and the traffic 
scenarios were unfamiliar to them. J-rings were often 



used as additional memory aids, as well as to visually 
emphasize the 5 nm separation boundaries for aircraft 
that had potential conflicts with other nearby aircraft.  
 
As shown in Figure 8, there was a large difference in 
these types of activities between the two controllers 
in Ardmore sector. Similarly in Amarillo and Wichita 
Falls, controller 2 consistently engaged in more 
monitoring activities than controller 1. Controller 2 
also engaged in less monitoring activities in 
unmanageable than in maximum traffic scenarios 
across all three sectors, perhaps because monitoring 
activities were lower priority tasks that were dropped 
when the controller became too busy. Overall, it is 
interesting that these types of activities did not seem 
to affect their overall workload assessment since the 
two controller participants generally agreed on their 
workload in each traffic scenario despite having a 
large difference in these monitoring activities. 
 
Finally, one interesting finding unique to Amarillo 
sector was an individual difference in the types of 
clearance issued by the two controller participants. 
As shown in Figure 9, controller 1 issued mostly 
lateral route amendments while controller 2 issued 
more altitude clearances.  
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Figure 9. Number of altitude and route clearances for 

Amarillo sector 

 
Controllers have commented that they try to resolve 
the conflicts using lateral maneuvers because 1) 
aircraft may be flying its preferred altitude and 2) an 
altitude maneuver is reserved as an “out” maneuver 
in case lateral maneuvers do not resolve the conflict. 
The data suggest that different controllers use 
different amount of lateral vs. vertical maneuvers in 
similar traffic situations. 
 

Conclusion 
 

There are interesting implications to the non-linear 
relationship between subjective workload and traffic 
count. First, any estimation on workload should not 
be extrapolated linearly from a set of workload 
measures taken from an experiment since the 
extrapolated workload is likely to significantly 
underestimate workload. The potential for 
underestimation of workload is greatest when 
evaluating future air traffic concepts that rely on 
automation to reduce task load and increase capacity. 
Secondly, metrics such as traffic count or task load 
should not be used interchangeably with subjective 
workload unless a better characterization of their 
relationship is established. Finally, non-linearity of 
workload implies the importance of determining the 
critical traffic levels that shift perceived workload 
from low to high. This will be a significant challenge 
due to individual differences in controllers’ abilities 
and off-nominal events that can critically affect the 
workload. Further research is needed to understand 
how to accurately account for these factors. 
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