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Future long-duration missions will require astronauts to act more autonomously, manage
their schedules, and replan timelines as anomalies and discoveries occur. Astronauts are not
professional planners, however, and the complexity of schedules that novice planners can com-
plete successfully is not fully understood. To identify the primary factors which contribute
to scheduling task complexity, we conducted a human-in-the-loop study and developed plan-
ning algorithms to investigate how the type and amount of constraints affect the difficulty of
scheduling and rescheduling. We created rankings of difficulty using a combination of human
performance metrics from experimental planning tasks and metrics describing the final plans
that participants scheduled. Using the results of our scheduling and rescheduling algorithm
algorithms, we created a similar ranking with which to compare. We created rankings which
compared well between the experimental and algorithm results for the scheduling task, but the
rescheduling task proved more difficult to estimate.

I. Introduction

Astronauts on the International Space Station currently have their schedules managed by a team of professional
planners. Weeks are spent crafting schedules to meet the varied constraints of the science, assembly, andmaintenance

tasks required to be conducted onboard the vehicle. In the face of emergencies, unscheduled maintenance, or other
unplanned events, these planners must reschedule as many tasks as possible while still meeting all the complex constraints
between both activities and resources. As NASA considers future long-duration missions to the Moon, Mars, and
beyond, research must address the new challenges resulting from the increased communication latency between planners
on the ground and crew onboard the vehicle. In these missions, astronauts are envisioned to act with greater autonomy
and will need to schedule and reschedule their own timelines. Astronauts are not professional planners, however, and
the complexity of schedules that novice planners can complete successfully with regards to performance and cognitive
workload is not fully understood. To investigate the primary factors which contribute to scheduling task complexity, we
conducted a human-in-the-loop study designed to investigate how the type and amount of constraints affect human
performance for scheduling and rescheduling.

Our previous work investigated the various factors around human performance, workload, and situational awareness
for an experimental scheduling task [1]. We previously investigated how metrics such as time on task, the number of
constraint and overlapping violations, and workload are affected by the different types and amount of constraints. While
significant findings were identified (more constraints generally leads to longer time to complete the task and more
violations, for instance), these individual metrics did not consistently identify that any one constraint was the most or
least challenging to solve. Additionally, previous analyses only investigated the metrics associated with scheduling, and
the final plans resulting from the scheduling task have not been investigated. Here, we investigate metrics for measuring
the quality of the final plans that participants created in their task, including margin (the amount of unscheduled time in
the plan) and the number of unscheduled activities. For a complete discussion of this experiment and the results around
the scheduling metrics, see our previous publications [1–3].
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Fig. 1 Playbook is a mobile, web-based scheduling software used to enable crew self-scheduling.

Participants accessed the scheduling platform Playbook [4–6]. Playbook is a mobile, web-based scheduling software
used to enable crew self-scheduling, see Fig. 1. In Playbook, the timeline view displays time horizontally from left to
right with each crewmember having their own row and their own activities to be executed chronologically. An activity
is displayed as a colored rectangle with the length of the block directly proportional to the duration of the activity.
Flexible activities (marked with a white dot in the user interface) can be manipulated (i.e., scheduled and assigned
by the user), and inflexible activities cannot be moved. An activity may be unconstrained or may have one or more
associated constraints. If a constrained activity is scheduled, but the constraint requirements are not met, the activity is
marked with a red outline, denoting a constraint-based violation was created. Overlapping activities are also flagged
as a violation. For this experiment, all flexible activities had a scheduling priority (high, medium, or low priority).
Participants were asked to complete their (re)scheduling efforts by activity priority level — high, medium, and low.
Participants were also provided with more activities to schedule than the available time in the timeline, forcing them to
make decisions based on this priority. Flexible activities could have associated constraints based on time, resources,
equipment, and temporal relation to other activities.

In the field of computer science, problem complexity is characterized into broad classes, e.g., polynomial or
exponential, and the complexity class applies to broad problem classes, not to individual problem instances. All of the
problem instances in this experiment would fall into the same problem class and, thus, be in the same complexity class.
This does not guarantee, however, that human planners will find all scheduling problems similarly difficult to solve. The
artificial intelligence (AI) planning field typically uses this problem complexity approach as well [7–10].

While computational approaches for measuring planning complexity have previously been explored [11], they have
focused on determining how algorithmically these planning problems can be solved and, in general, only emphasize
classes of planning problems. We specifically want to address scheduling task complexity, which may compare one
planning problem instance with another, and how that complexity may affect human performance. There has been little
research comparing objective measures of scheduling task complexity to human performance measured in controlled
laboratory studies [12, 13], though researchers often consider subjective measures of task difficulty [14]. Our aim is
to assess the relationship between self-scheduling performance collected through human-subject testing [1] and the
objective “difficulty” of the planning problem instance.

We had two primary questions which we aimed to answer in this study:
1) How do different types and amounts of constraints impact human performance in the (re)scheduling tasks?
2) Can we use computational approaches to scheduling difficulty to predict human performance in the (re)scheduling

task?
Identifying a robust computational measure of scheduling difficulty will allow us to predict human performance
generically and identify scheduling problems that novice planners will be able to solve.
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II. Methods

A. Experiment
We recruited 31 participants and split them between two groups based on the task they were asked to complete:

scheduling or rescheduling. We developed a baseline schedule similar to those that are used onboard ISS and Earth-based
analog missions such as NASA Extreme Environment Mission Operations (NEEMO) [5, 15]. Participants in the
scheduling group were presented with an initial timeline that had only pre-planned, inflexible activities, and had several
large blocks of time available for the participants to plan activities. The rescheduling group was presented with an initial
timeline which contained both inflexible and flexible activities, and were then asked to reschedule as needed to meet
their goals (see Fig. 2). Participants were instructed to schedule the activities in order of priority, starting with high,
then medium, and finally low. In the experiment, we investigated 4 different types of constraints:

• Time Range Constraint (TR) limits the time of day an activity can be scheduled (e.g., Activity A must start no
earlier than 0900 and end no later than 1030);

• Requires Constraint (R) states that the activity needs to have a particular resource available (e.g., Activity A
requires communication availability);

• Claim Constraint (CL) describes a specific piece of equipment required for a particular activity (e.g., Activities A
and B both claim a treadmill, therefore cannot be scheduled at the same time);

• Ordering Constraint (O) describes when an activity should be scheduled in relation to another activity (e.g.,
Activity A must be scheduled before Activity B).

In each trial completed by participants, activities had only one type of constraint at one of two levels: low (33% of
activities constrained) or high (66% of activities constrained), creating a total of 8 scheduling problems that participants
needed to solve. Each participant completed training, a baseline task with no constraints, and the 8 additional tasks
which were provided in a random order based on a Latin square design. After completing each trial, participants rated
their cognitive workload using the NASA-TLX [16, 17]. For a complete discussion of this experiment and its results,
see our previous publications [1–3].

(a) Scheduling (b) Rescheduling

Fig. 2 Examples of the initial conditions for the (a) scheduling and (b) rescheduling trials, showing the partially
and fully scheduled timelines, respectively.

B. Modeling
In our previous work, we described an approach for computing the “Expected Solution Quality (ESQ)”, which

can be used to compare different constrained optimization problem instances [11]. The ESQ approach enables the
expression of solution quality and problem-solving computation time using the same metric units; thus, these two factors
can be combined into a single metric. The approach involves a statistical characterization of a problem computed from a
uniform random sampling of its solution space. For this study, we are using a simplified variation of the ESQ approach
that does not require that the random sampling be uniform, and due to this non-uniformity, the solution quality metric
and the problem-solving computation metric cannot be combined into a single metric. Furthermore, we are using the
size of the search tree as an estimate of problem-solving effort. The margin of the resulting plan, which is the summation
of all the time on the plan with no scheduled activities, was also calculated. Plans with a smaller margin are considered
to be better than those with a large margin as they make more efficient use of time.

We have developed an iterative random sampling algorithm for each of the two experiment tasks, scheduling and
rescheduling. On each iterative sample a solution is incrementally constructed (without any backtracking) by making
random choices among the possible options at each problem-solving step. From the results of running these algorithms,
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we compute statistics regarding the solution quality as well as regarding the search tree size. Here, the proportional
solution quality metric is defined by Equation 1,

SQ? = 102 ∗ *�
)�
+ 10 ∗ *"

)"
+ *!
)!

(1)

where*�,",! is the number of unscheduled activities with priority high, medium, and low, and )�,",! is the number
of total activities with priority high, medium, and low. The solution quality statistics provide a measure of the difficulty
of producing high-quality solutions and the search tree statistics provide a measure of problem-solving effort. These
metrics can be used to rank-order the problem instances in terms of “difficulty”, in order to compare these two rank
orders to participants’ performance, as well as their subjective experiences of problem difficulty.

1. Scheduling Algorithm
Participants in the scheduling task were given a partially scheduled timeline (inflexible activities only) and asked to

insert new high, medium, and low priority activities. We designed and implemented an iterative sampling algorithm
which takes the actions that a human planner takes to solve the scheduling task. Given an initial, partially scheduled
timeline that consists of entirely inflexible activities, the algorithm makes random choices in an attempt to schedule
all of the new activities in order of priority, see Algorithm 1. In this algorithm, an activity (�) is chosen from the
set of activities to be scheduled (��, then "�, then !�), a valid slot (+() which the activity can be scheduled in is
identified from the set of valid slots (+(), and the schedule is updated to accommodate the activity. Each +( is selected
from the $?4=!8BCB of spaces between inflexible activities, and these $?4=!8BCB are updated when new activities
are scheduled (after which they are treated as inflexible). +( are all contiguous unoccupied timespans that are large
enough to hold � and in which � can be placed anywhere tip violating any constraints, see Fig. 3. This is evaluated
after tentatively applying any moves and removals. Once a +( is chosen, � is scheduled at the beginning (earliest time)
in the slot. Activities are selected at random from highest remaining priority until all activities have been scheduled or
have failed to be scheduled, and activities that are failed to be scheduled are placed in the set of failed activities (��).
Once an activity has failed to be scheduled it is no longer considered by the algorithm. The subjects can undo their plan
modifications, i.e., backtrack, and the iterative sampling algorithm does not include backtracking; however, the space of
possible solutions that can be generated by the subjects is the same as the algorithm’s solution space.

Fig. 3 “Valid Slot” example. The activity to be inserted can fit in any sufficiently wide time slot bounded
by other activities already in the same crew member’s row (blue or gray) or by keep-out zones (red). In this
illustration, the necessary equipment is already claimed (CL) by two already-scheduled activities, and there is
a final keep-out zone on the right side stretching to the end of day, due to either a time-of-day (TR) or ordering
(O) constraint. (The current experiment did not mix two types of constraints in a single condition.) This leaves
four valid slots (green circles).

2. Rescheduling Algorithm
Participants in the rescheduling task were given a fully scheduled timeline (both inflexible and flexible activities)

and asked to insert new, high priority activities by removing lower priority activities. As with the scheduling algorithm,
we implemented an iterative sampling algorithm which takes the actions that a human planner takes to solve the
rescheduling task. Given an initial timeline that consists of flexible and inflexible activities of high, medium, and
low priority, the algorithm makes random choices in an attempt to schedule all of the new high priority activities, see
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Algorithm 1 Iterative Sampling Algorithm for Scheduling
Initialize (2ℎ43D;4, $?4=!8BCB
��, "�, !�← Sets of Prioritized Activities
��← {}
)A44(8I4 ← 1
for (� in {��, "�, !�} do

for � in (� do
+( ← Valid slots in $?4=!8BCB
if +( is {} then

Remove � from (�
Add � to ��

else
)A44(8I4 *= size(+()
+( ← random choice from +(
procedure (2ℎ43D;4

Update (2ℎ43D;4 to reflect insertion of �
Update $?4=!8BC to reflect insertion of �
Remove � from (�

end procedure
end if

end for
end for

Algorithm 2 Iterative Sampling Algorithm for Rescheduling
Initialize (2ℎ43D;4, $?4=!8BCB
��← Set of New High Priority activities
"�, !�← {}
��← {}
)A44(8I4 ← 1
for (� in {��, "�, !�} do

for � in (� do
+( ← Valid slots in $?4=!8BCB
if +( is {} then

Remove � from (�
Add � to ��

else
)A44(8I4 *= size(+()
+( ← random choice from +(
Compute �( from +(

'4B2ℎ43D;4 ← random choice from �(
)A44(8I4 *= size(�()
procedure '4B2ℎ43D;4

Add each removed activity to ��, "�, !�
Update (2ℎ43D;4 to reflect each activity removal
Update (2ℎ43D;4 to reflect insertion of �
Update $?4=!8BC to reflect insertion of �
Remove � from (�

end procedure
end if

end for
end for
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Algorithm 2. As in Algorithm 1, an activity (�) is chosen from the set of new high priority activities to be scheduled
(��), a valid slot (+() which the activity can be scheduled in is identified from the set of valid slots (+(), and the
schedule is updated to accommodate the activity. Here, +( are defined such that, if all the flexible activities were
removed, there is enough room (with no overlaps) to insert � without violating any associated constraints. The core of
this rescheduling algorithm involves creating a candidate set (�() of operations to insert the new high priority activities
by either moving or removing the activities that have been currently scheduled (these operations are further described
below). A random choice from this set of candidate operations is then chosen until all activities (including the set of
medium, "�, and low, !� priority activities that have been removed to accommodate the new high priority activities)
have been scheduled or have failed to be scheduled. Activities that are failed to be scheduled are again placed in the set
of failed activities (��) and no longer considered by the algorithm.

Each�( consists of two types of insertions that approximate the actions that a planner takes during their rescheduling
task. Both of these actions attempt to insert Activity � with duration � into the schedule. The two types of actions are to

1. Insert an activity by moving already scheduled activities (without removing activities). To do this, the algorithm
1.1. Considers the windows between two consecutive fixed activities on the schedule. If a selected window

has a total margin greater than or equal to �, then continue. See Fig. 4 for an example.
1.2. Determines if � can be inserted between the fixed activity at the left side of the window and first flexible

activity in the schedule, between every pair of flexible activities, and between the last flexible activity
and the fixed activity at the right side of the window.

1.3. For each of these candidate insertions, move any activities before the insertion point as far left as possible
within the window (respecting any constraints), and moves any activities after the insertion point as far
right as possible. If the gap produced by these moves has a span greater or equal to �, then the start
time of this gap is a valid choice to add to the set of candidate choices.

2. Insert an activity by removing already scheduled activities. To do this, the algorithm
2.1. Considers all sequential subsets of the flexible activities for removal. First the removal of single activities

is considered, then removal of consecutive pairs of activities are considered, then consecutive triples of
activities are considered, etc. Then the constraints of the remaining activities must be applied, which
creates “keep-out zones.”

2.2. For each removal option:
2.2.1. If there is room to fit the task into a valid interval (between keep-out zones) then it is placed

as early as possible.
2.2.2. If there is no room, then apply the procedure from 1.3. to move flexible activities to enable

insertion and add candidates to the set.
To build the �( , the algorithm identifies all valid actions of these two types.

Fig. 4 Example of one option for inserting an activity in a crewmember’s row. Two flanking inflexible activities
(gray) have been selected. It must avoid overlapping any other activities (blue) in the selected row or any area
that would violate a constraint (red), in this case a conflicting claim by an activity in another crew member’s
row. This particular option involves removing one activity andmoving another as far right as its own constraints
allow.

III. Results

A. Experiment
Instead of only investigating metrics around the scheduling task itself, our current work examines the metrics

associated with the final plans that participants created. Here we investigated margin and proportional solution quality
(SQ?). Unlike the metrics based around the scheduling task, these plan metrics can be directly compared between the
experimental and modeling efforts. While we did not expect the algorithm results to be directly comparable to those
from the experiment, as the algorithm is based around making random choices rather than the purposeful decisions the
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Fig. 5 The margin remaining from the experiment across the two types of task, four types of constraints, and
two amounts of constraints. Error bars represent the standard error of the mean.

participants made, we analyzed the metrics to rank the different conditions in order of difficulty.
For both of our human performance metrics, we used linear mixed effects models with one between-participants

variable (type of task, with 2 levels) and two between-participants variables (type of constraint, with 4 levels; and
number of constraints, with 2 levels). Participants were added into these models as a random factor. When statistically
significant effects were identified, post-hoc comparison tests were conducted using Tukey Honest Significance Tests with
a Bonferroni correction. When necessary due to missing data, Satterthwaite’s method was used to adjust the degrees of
freedom.

Analysis of the margin of participants’ final plans indicates that there were significant main effects due to the type of
task (� (3, 29.04) = 6.01, ? = 0.02), type of constraint (� (3, 87.17) = 18.30, ? < 0.001), and number of constraints
(� (3, 116.02) = 25.66, ? < 0.001). There was also a significant two-way interaction effect between type and number
of constraints (� (3, 116.02) = 3.17, ? = 0.03), and a significant three-way interaction effect between type of task, type
of constraint, and number of constraint (� (3, 116.02) = 9.47, ? < 0.001). This three-way interaction effect reflects
that there were roughly two margin sizes that tended to remain at the end of the experimental trials. Participants were
instructed to attempt to minimize the margin in their final plans, and a lower margin indicates that participants planned
more efficiently. Within the different constraint types, the planning instance was exactly the same, but they resulted
in very different margins across the type of task participants were completing. In the scheduling task, participants
tended to always have roughly the same amount of margin remaining at the end of their trials, except for TR�86ℎ , which
resulted in a significantly higher margin. For the rescheduling task, participants tended to again have the most difficulty
scheduling trials with the TR constraints. The TR and O constraints resulted in roughly the same amount of margin
remaining at the end planning process, regardless of the number of activities with constraints. In contrast, the R and
CL constraints had significantly more margin in the high number of constraints conditions than the low number of
constraints trials. See Fig. 5 for a breakdown of the remaining margin in the participants’ plans.

Analysis of the solution quality identified a significant main effect due to the type of constraint (� (3, 173.52) =
3.29, ? = 0.02). The type of task and amount of constraints were not significantly different. Post-hoc pairwise
comparisons show that this effect is largely driven by the CL constraints. These trials had significantly higher solution
quality (i.e., worse resulting plans) than O (? = 0.02), and the CL trials tended to have the equivalent of one additional
medium priority activity unscheduled. Given the constraints of the inflexible activities initially in the plan, it was not
possible to schedule all activities, though it was possible to only leave 2 activities unscheduled (resulting in a solution
quality of 0.250). It should be noted, however, that the vast majority of participant trials (226 of 248) had a solution
quality ≤ 0.75, indicating that participants had scheduled all high and medium priority activities and had 6 or less
low priority activities unscheduled. Roughly 95% of scheduling trials and 88% of rescheduling trials had a SQ? < 1.
Additionally, 194 of 248 trials resulted in a solution quality of either 0.375 or 0.500, indicating that participants normally
scheduled all but 3 or 4 activities, respectively.
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B. Modeling
We ran 10,000 samples in each condition for a total of 180,000 simulations for this analysis. On each iterative sample

a solution was incrementally constructed by making random choices among the possible options at each problem-solving
step. The result of these random choices are sets of plans which are, on average, much worse than the intentional plans
created by our novice planners. Despite this, both of the algorithms were designed based on the strategies employed by
the participants in the experiment and were capable of finding the same solutions that participants did.

The minimum solution quality possible on all trials was 0.250, which was found in 7 of the 18 conditions. (Only
one of these conditions, the baseline, occurred in the rescheduling results.) Additionally, 7 of the 18 conditions found
solutions with only 3 activities remaining. The scheduling algorithm performed notably better than the rescheduling
algorithm, however, resulting in plans with much lower scheduling quality. Based on how the rescheduling algorithm
was designed, though, this is not surprising. Considering the random nature of the choices made at each step, it was
much easier for the scheduling algorithm to make “lucky” random choices. If the rescheduling algorithm failed to
reschedule a single high priority activity early in the planning process, it could never improve that iteration’s solution
quality below 100. At least one high priority activity remained in the final plan much more frequently for rescheduling
algorithm results (75,328 of 90,000 samples) than the scheduling algorithm results (5,830 of 90,000 samples).

Due to the nature of the solution quality metric, the resulting distributions were not normal and median values were
used for the rest of this analysis. The resulting median solution quality of the samples varied greatly depending on the
type and number of constraints. For the scheduling task, all the constraints except for R showed an increase in solution
quality as the number of constraints increased from Low to High. This difference is reflective of roughly one additional
medium priority activity being unscheduled in the High constraint conditions. For the rescheduling task, the O and R
constraints showed a similar trend as the number of constraints increased. TR remained flat, however, while CL showed
a large increase when constraints increased. Complete results of the solution quality are available in Table 1.

C. Rank Comparisons
To compare between our experimental and modeling rankings, we first determined which metrics to include. We

included measures of efficiency, accuracy, and workload in order to capture the “difficulty” of the experimental trials.
These scheduling metrics included time on task, the number of constraint based and overlapping violations made while
planning, and the participants’ workload. We then also included scheduling quality and the margin of the final plans that
participants created. We separated the data between the two groups of participants, scheduling and rescheduling, as the
differences between the two tasks did not allow for direct comparisons. These metrics were then converted to z-scores,
representing the number of standard deviations by which the value of a raw score is above or below the mean value of
the metric. Finally, the z-score transformed metrics were averaged and summed for each condition to create a final score.
The four scheduling metrics were each given a weight of 0.25, while the two plan metrics were given a weight of 0.50
before summing, such that both aspects of the task had equal weight.

To create the rankings from the modeling data, we initially investigated tree size, scheduling quality, and margin.
Tree size, which relates to the problem-solving computation time was ultimately removed, however, as it wasn’t found to
be correlated with any of the experimental metrics. The results for minimum, mean, and median tree size are available
in Table 2. For the final modeling rankings, the scheduling quality and margin were put through a similar procedure as
the experimental metrics. Both metrics were split between the two tasks, transformed to z-scores, and equally weighted
to create the final rankings.

For the scheduling experiment, we found that the hardest problems to solve generally had a higher number of
constraints, and that each constraint’s high number condition was ranked more difficult than the corresponding low
number condition. The experimental trials identified TR, CL, and O as the most challenging, while R and the Baseline
trial were ranked as easier. These results generally show good agreement with the rankings produced by the scheduling
algorithm, which also identified TR, O, and CL as the top three hardest problems. While R and the Baseline were also
identified as the easiest problems, one quirk of the scheduling algorithm rankings is that R�86ℎ was ranked as being
easier to solve than R!>F . This quirk appears to be a result of the scheduling algorithm producing the smallest margin
compared to all the other conditions, which was not found in the experimental trials. Aside from this constraint type,
however, we again found that all High number of constraint conditions ranked as more difficult than their Low number
of constraints counterparts.

For the rescheduling experiment, we found that the CL�86ℎ and TR�86ℎ conditions ranked the hardest, while R!>F
and O!>F ranked easiest. The algorithm, on other hand, identified O�86ℎ and CL�86ℎ as as the hardest, while R!>F
and TR�86ℎ ranked easiest. A notable difference between the experimental and algorithm results for rescheduling is
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Table 1 Solution Quality

Task Constraint Percentage Min Mean Median

Schedule CL High 0.375 1.225 1.500
Low 0.500 0.805 0.500

O High 0.250 5.897 1.625
Low 0.250 3.000 0.500

R High 0.250 0.435 0.375
Low 0.250 0.546 0.500

TR High 0.375 2.228 1.875
Low 0.250 0.834 0.500

Baseline — 0.250 0.944 0.500

Reschedule CL High 0.375 22.829 26.375
Low 0.375 21.631 17.688

O High 0.375 29.736 27.875
Low 0.625 24.949 26.625

R High 0.625 19.177 16.500
Low 0.375 17.006 15.375

TR High 0.750 15.332 15.375
Low 0.375 17.808 15.500

Baseline — 0.250 17.637 15.375

Table 2 Tree Size

Task Constraint Percentage Min Mean Median

Schedule CL High 5E+03 8E+05 3E+05
Low 1E+04 5E+05 3E+05

O High 9E+07 2E+11 5E+10
Low 7E+08 2E+12 6E+11

R High 3E+10 3E+13 1E+13
Low 5E+10 3E+13 1E+13

TR High 1E+06 8E+07 4E+07
Low 1E+08 1E+11 5E+10

Baseline — 1E+04 4E+05 2E+05

Reschedule CL High 2E+06 4E+10 2E+09
Low 1E+06 2E+11 3E+09

O High 2E+06 1E+10 5E+08
Low 2E+06 1E+10 1E+09

R High 5E+06 5E+11 3E+10
Low 3E+06 5E+11 1E+10

TR High 4E+03 2E+05 9E+04
Low 6E+04 4E+08 4E+07

Baseline — 5E+06 1E+11 6E+09

9



Table 3 Scheduling Problem Difficulty Rankings, from Hard to Easy

(a) Experimental Data

Constraint Percentage Rank Score

TR High 1 1.36
CL High 2 0.26
O High 3 0.11
CL Low 4 -0.06
R High 5 -0.07
TR Low 6 -0.08
O Low 7 -0.34
Baseline — 8 -0.41
R Low 9 -0.68

(b) Algorithm Result

Constraint Percentage Rank Score

TR High 1 0.67
O High 2 0.38
CL High 3 0.25
CL Low 4 0.15
O Low 5 -0.12
TR Low 6 -0.24
Baseline — 7 -0.25
R Low 8 -0.25
R High 9 -0.59

Table 4 Rescheduling Problem Difficulty Rankings, from Hard to Easy

(a) Experimental Data

Constraint Percentage Rank Score

CL High 1 1.13
TR High 2 0.71
TR Low 3 0.30
R High 4 0.19
CL Low 5 -0.21
O High 6 -0.31
Baseline — 7 -0.48
R Low 8 -0.57
O Low 9 -0.75

(b) Algorithm Result

Constraint Percentage Rank Score

O High 1 0.40
CL High 2 0.14
O Low 3 0.07
CL Low 4 0.06
R High 5 0.03
TR Low 6 -0.13
Baseline — 7 -0.15
R Low 8 -0.15
TR High 9 -0.27

that the O constraint, which ranked relatively easy for the participants, was identified as the most challenging for the
algorithm. This is the only constraint type that required two activities to be scheduled together, while all the other
constraint types required the opposite. Participants most likely rescheduled the two activities consecutively, whereas
the order of activities rescheduled by the algorithm is random—no dependencies (via constraints) are considered. In
fact, both algorithms show the highest average solution quality for the four O constraint conditions, suggesting that the
solution quality had a large negative skew for this constraint type. In general, the rankings for the rescheduling problem
do not align as well as those for the scheduling algorithm. The final rankings for the scheduling and rescheduling
problems are available in Tables 3 and 4.

IV. Discussion
Future long-duration missions will require astronauts to act more autonomously, manage their schedules, and replan

as anomalies and discoveries occur. Astronauts are not expert planners, however, and software aids can be designed to
help support the planning task. To know where support countermeasures are needed, we must first rank scheduling
and rescheduling problems to identify which constraints cause the most difficulty. Additionally, being able to assess
a timeline for its scheduling task complexity would help expert planners determine if astronauts could (re)schedule
that particular day. We created rankings of difficulty using a combination of human performance metrics from the
experimental planning tasks and metrics describing the final plans that participants scheduled. Using the results of our
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scheduling and rescheduling algorithm simulations, we created a similar ranking with which to compare, in the hopes
of being able to predict the relative difficulty of future planning tasks. While we were able to create rankings which
compared well between the experimental and algorithm results for the scheduling task, the rescheduling task proved
more difficult to estimate. This may simply follow from the poor solution quality generally found by the rescheduling
algorithm–indicating that it does not perform as well as the scheduling algorithm. The rescheduling task has more
types of plan modification operators, and it seems that there are more “bad” choices that impact future choices (due to
not allowing backtracking, and only allowing an activity to be attempted to be rescheduled only once). These factors
could result in worse median quality scores and might require higher numbers of samples to find the best solutions. The
strategy taken by the rescheduling algorithm—to attempt to schedule high priority, then medium, then low—may not be
reflective of the participants actual behavior. Future work can aim to better identify the strategies that the rescheduling
participants were taking and attempt to integrate these into a future rescheduling algorithm.

Statistical analysis of the human performance metrics suggests that the TR constraint caused participants to create
plans with significantly more margin than the other constraint types, and identified that the CL constraint resulted in
plans with the worst solution quality. This held true across both the scheduling and rescheduling tasks, and the algorithm
also consistently identified CL in the upper half of the difficult problems. The TR and CL constraint types seem to be
significantly more difficult for participants to schedule (and reschedule) compared to the other types of constraints,
especially when there are many of these constraints that need to be resolved. When considering future scheduling
aids for novice planners, it may be useful to prioritize new features that help manage these constraints specifically.
Alternatively, when considering future long-duration missions, it may be that plans with many of these constraints need
to be handled by expert planners on Earth rather than allowing astronauts onboard to resolve that part of the planning
process.

One limitation of this study was that each constraint was only considered by itself, and that no experimental or
modeling trials included constraints of multiple types. It is not clear how different combinations and types of constraints
would interact with each other. Ongoing research efforts at NASA’s Human Exploration Research Analog (HERA)
Campaign 6 are tasking analog crews with scheduling their operational timeline. These operational timelines include a
varied number and type of constraints more similar to those that astronauts may face on future long-duration exploration
missions. While none of the modeling results in this present study investigated multiple constraint types, the algorithms
themselves are already capable of scheduling with varied constraints. Future work could investigate the timelines that
analog crew in HERA C6 are currently being asked to schedule to explore if the rankings developed here are applicable
to operational timelines.
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