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A
Abstract

large number of computational methods for

p
assessing the quality of static images have been
roposed. They differ along many dimensions,

c
especially their range of application areas and
omplexity. This review is intended to help the
researcher in search of a suitable metric.

Introduction
r

l
Several recent projects associated with ou

aboratory have needed computational methods for

s
assessing image quality. 1) A display modeling
ystem needed a method for comparing proposed

s
displays and evaluating the quality of its
imulations (Martin, Ahumada, & Larimer, 1992).

c
f
2) A halftoning optimizing method needed a metri
or evaluating the quality of its halftones (Mulligan

c
& Ahumada, 1992a). 3) A DCT image
ompression project needed a method for measuring

P
visibility of compression artifacts (Ahumada &
eterson, 1992; Watson, 1993). 4) A sensor fusion

t
workstation project needed methods for evaluating
he quality of radar and IR enhanced displays

f
t
(Pavel, Larimer, & Ahumada, 1992). The goal o
his paper will be to try to develop a framework for

m
describing image quality metrics, summarize the
ethods that we have researched, describe some of

r
the relationships between the methods, and provide
ecent entry references to the literature.

c
m

The scope of the paper is limited to stati
onochrome images and to methods that compute a

o
distance function between two images, usually an
riginal image and a corrupted version of it. This

v
would still include all computational models of
isual discrimination, so the scope is also restricted

i
to vision models applied to image quality. Much
mage quality work has focussed instead on the

e
w
properties of the image display system and provid
hat one might regard as estimates of display

l
s
system channel capacity after the human visua
ystem is included in the system (Barten, 1990;

p
1992). An alternative approach to system
erformance could be based on the approach of the

c
metrics considered here. One could assess the
orruption by a system to individual images and

then average over the class of expected images.
y

m
This is more in the spirit of the noisy image qualit
easures, such as that of Barrett (1992).

T
Framework

he present framework provides for a pair of
images, . The visual model computesI , I P0 1

0 1)P (I ) , P (I m
t
lists of visual system outputs fro
he images. The integration rule )Q (P (I ) , P (I )10

l
o
gives the "distance" between pairs of perceptua
utputs. For barely distinguishable perceptual

eoutputs, should be monotonically related to thQ
probability that an observer would see them as
different.

For example, the optimum halftoning method

e
mentioned above needs a very rapid method for
valuating the quality of its halftones. The

nperceptual output is a lowpass (blurred) versioP
o If the image and the integration rule

r0 is the square of the Euclidean o1Q (P (I ) , P (I ) )
,RMS distance between them

0 1
2Q = P (I ) − P (I )

= ( p − p ) ,Σ
x y

0, x , y 1, x , y
2Σ

i , x , yw phere the are pixel values in the blurred
images.

A useful simplification results when the
t

i
perceptual output is a linear function of the inpu
mage, as in the simple blur case, and the

e
b
integration rule is a function of the differenc
etween the perceptual images. In this case the

i
integration rule can be applied to the difference
mage , since∆I = I − I1 0

1 0 )
=

Q (P (I ) ,P (I )
Q (P (I ) − P (I ) )1 0

01 )
=

= Q (P (I − I )
Q (P (∆I ) )

Features of the perceptual output
s

t
The perceptual output function incorporate

he main features of image processing by the visual
system:
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) Optical blur
2) Photoreceptor sampling and transduction

l
4
3) Retinal local contrast enhancement and gain contro
) Masking which is luminance, contrast, spatial

.

T

frequency, orientation, and location specific

hese effects are all to some degree image specific.

e
The blur function depends on the pupil size; the
ffective sampling depends on whether rods are

r
a
playing a role. All the effects except optical blu
re to some extent nonlinear, but are often

,
t
approximated by linear computations. For example
he local contrast and gain control mechanisms are

t
a
considered to be more divisive than subtractive, bu
re most frequently modeled by a linear filter

s
b
whose response falls off for spatial frequencie
elow 1 cycle per degree. The spatial frequency

e
d
and orientation specificity of masking has led to th
evelopment of multi-channel models, where each
point in space is multiply represented.

The integration rule
e

m
Many researchers use the Euclidean distanc

etric described above or a generalization of that

R
metric, the Minkowski metric or distance (de
idder, 1992)

Σ
j

0, j 1, j
E 1/E .Q = [ p − p ]

E = 2,
a
It gives the Euclidean distance for
pproximates probability summation (Watson,
1979) when , and finds the maximumE = 4

∞E → .absolute difference when
Although a simple Euclidean distance function

r
(RMS error) is most frequently used, some
esearchers have found it necessary to include a

c
nonlinear rectification stage, like squaring, to
ompute unsigned errors and then follow this with

a
a local integration stage to represent summation
mong errors that are close together in space. This

t
precedes the general combination rule to represent
he combination of errors that are far away in space
or in some other channel altogether.

Model linearization
r

m
A useful technique for simplifying nonlinea

odels for evaluating the effects of small image
edistortions from a base image is to linearize thI 0

I 0 r
f
model in the region of . We find a linea
unction such thatPI (I )0

0
P 0 0 I(I +∆I ) ∼∼ P (I ) + P′ (∆I ).

QIf the integration rule is a function of the
difference of the two images,

0 0 )
=

Q (P (I +∆I ) − P (I )
Q (P (I ) +P′ (∆I ) − P (I ) )0 I 00

I 0 )

A

= Q (P′ (∆I )

humada (1987) has discussed this technique for

(
simplifying nonlinear vision models and Girod
1989) has illustrated its usefulness in the

y
a
application of vision models to image qualit
ssessment. Notice that the image distortions have

i
to be so small that they do not significantly enter
nto the masking process, which is assumed to be
only a function of the base image . Only veryI 0

g
a
low contrast images can have their artifact maskin
dequately represented by a linear filter depending
only on the luminance.

The Table
r

o
Table 1 summarizes the models of a numbe

f researchers in the image quality field. The
,

e
entries are ordered by generally by complexity, and
xcept for the Grogan and Keene (1992) metric, the

t
models can be regarded as simplified versions of
he Lubin (1993) model. The topics are coded

,
I
according to the following key: HT = halftoning
C = image compression, IQ = image quality.

Perceptual Model Properties
Several properties are used to categorize the

p
perceptual models. First is the number of
erceptual images generated. For the models that

,
a
are both spatial frequency and orientation selective
pair of numbers is given. The first is the number

n
of spatial frequency channels, the second is the
umber of orientation channels. The second

r
l
property is the filter shape, B for bandpass, L fo
owpass. A multiple channel model with 5 spatial

e
s
frequency channels and 4 orientations will have th
pecification (5 4 B) even though one of the
c

×
hannels is lowpass. The number of channels is

f
c
given as a guide to complexity. Larger numbers o
hannels could be used with larger images, but little

c
change in computation occurs if the low frequency
hannels are adequately subsampled.

.
T

The next three properties are local properties
he inclusion of point nonlinearities before the final

o
metric stage is represented by N. These are most
ften concave downward functions that increase

sdynamic range, but can also be S-shaped function
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hat mimic the thresholding and saturation
y

m
properties of neurons. The use of a local intensit
easure to compute local contrast in the manner of

b
Peli (1990) and Duval-Destin (1991) is represented
y C. The use of a local activity measure is

s
u
denoted by A. Like the local intensity measure it i
sed to reduce the signal. It can be either a local

m
variance measure or some type of edge energy
easure obtained by high pass filtering and

l
e
rectification. Both the local contrast and loca
nergy measures could be regarded as generating

e
Z
additional channels in the models, although in th
etzche and Hauske (1989) Ratio-of-Gaussian

M

model, no additional channels are needed.

etric Properties
The metric property S indicates the use of

a
local error summation preceding the final error
ggregation step. The value of the Minkowski

p
exponent is then given, or the use of actual
robability summation is indicated by P.

T
Discussion

he Table illustrates that a large range of
n

i
metrics have been proposed. The obvious questio
s whether so many are needed. Clearly, to the

a
extent that some are just computational
pproximations of more complex ones, the variety

p
seems reasonable. The question which is most
uzzling is the extent to which features that are

a
specifically added by some models are
utomatically included by others. Many metrics

d
m
include a term to specifically account for increase
asking near edges. Zetzche and Hauske (1989)

r
o
showed that this is an emergent feature of nonlinea
utput scaling in their oriented frequency channel

e
a
model. If more studies compared more models, th
pparent convergence towards these channel models
could be seen more as the result of facts than fads.

It has sometimes been reported that using a

w
filter to represent the visibility of artifacts does
orse than just using the RMS distance between

r
the original images (Farrell, et al., 1991). This
esult suggests not that visibility can be ignored,

n
but rather that the work done in developing
onlinear, image-dependent metrics has probably
not been done in vain.
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Table 1

Perceptual Transformation Metric
sResearchers Topic Images Filter N C A S Exp Comment

Z
Lubin, 1993 IQ 7×4 B N C A S 2.4 peripheral summation
etzsche & Hauske, 1989 IQ 5×6 B N C 2 ratio pyramid

S
Watson, 1993 IC 8×8 B N C 4 DCT basis
akrison, 1977 IC 12×9 B N A 6 early theory

g
W
Watson, 1987 IC 6×4 B N 4 efficient subsamplin
atson & Ahumada, 1989 IC 3×6 B N hexagonal array

S
Daly, 1992 IQ 6×6 B N P
hlomot et al., 1987 IC 6×6 B
Martin et al., 1992 IQ 9×3 B 4 Haar pyramid

K
Ahumada & Peterson, 1992 IC 8×8 B ∞ DCT basis
lein et al., 1992 IC 8×8 B 2 DCT basis

B
Grogan & Keene, 1992 HT 8 B N 2
urt & Adelson, 1983 IC 5 B Laplacian pyramid

M
Stockham, 1972 IQ 1 B N 2
annos & Sakrison, 1974 IQ 1 B N 2

s
G
Ngan et al., 1986 IC 1 B C DCT basi
irod, 1989 IC 1 B C S 2 linearized

r
L
Budrikis, 1972 IC 1 B A 1,2 TV quality mete
imb, 1979 IQ 1 B A S 2 options compared

N
Griswold, 1980 IC 1 B 2
ill, 1985 IC 1 B 2

2
M
Analoui & Allebach, 1992 HT 1 B
itsa, 1992 HT 1 B 2

4
Z
Lukas & Budrikis, 1982 IQ 1 L C A 2,
akhor et al., 1992 HT 1 L 2

2
S
Chu & Watunyuta, 1992 HT 1 L
ullivan et al., 1991 HT 1 L 2

2
P
Pappas & Neuhoff 1992 HT 1 L
appas, 1992 HT 1 L 2

2
M
Kolpatzik & Bouman, 1992 HT 1 L
ulligan & Ahumada, 1992 HT 1 L 2

FNetravali & Prasada, 1977 IC 1 A 2 no CS


