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Abstract

Finding the eye(s) in an image is a critical first step in a remote
gaze-tracking system with a working volume large enough to en-
compass head movements occurring during normal user behavior.
We briefly review an optical method which exploits the retroreflec-
tive properties of the eye, and present a novel method for combin-
ing difference images to reject motion artifacts. Best performance
is obtained when a curvature operator is used to enhance punctate
features, and search is restricted to a neighborhood about the last
known location. Optimal setting of the size of this neighborhood
is aided by a statistical model of naturally-occurring head move-
ments; we present head-movement statistics mined from a corpus
of around 800 hours of video, collected in a team-performance ex-
periment.
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1 Introduction

To obtain high-accuracy, a video-based eye-tracker must acquire a
high-resolution image of the eye. For any given camera, the best
image will be one in which the eye occupies the entire frame. For a
fixed (non-steerable) camera, however, the camera must maintain a
constant position relative to the head, to prevent the eye from leav-
ing the frame when the subject makes a head movement. Some sys-
tems solve this problem by attaching the camera(s) to the head; this
provides good eye image quality, but requires the subject to wear
a head-mount, and requires tracking of the head in order to refer
gaze to objects in the world. Alternatively, a remote camera may be
used, with the subject’s head stabilized with a chin-rest or bite-bar.
Neither of these approaches provides the subject with a particularly
natural experience, however, and are inappropriate when the goal is
to covertly observe behavior ”in the wild.”

To maintain high accuracy while still allowing a range of natural
movement, the image acquisition system must be able to follow the
eye as it moves in space. This can be accomplished by mechanical
steering of the viewing axis (e.g., by using a pan-tilt-zoom camera,
or steering the line-of-sight with galvonometer mirrors), or by mov-
ing a region-of-interest inset in a large, high-resolution image from
a fixed camera with a wide field-of-view. Currently, commercial
offerings are available using both approaches.

Regardless of how repositioning the area of analysis is accom-
plished, the system must determinewhere to reposition it. Addi-
tionally, when the initial position of the head is undefined, the eye(s)
must be located to begin tracking, and it is desirable for this to
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be accomplished automatically. A number of techniques are avail-
able for following the eyes using conventional imagery [Tong and
Ji 2008]; in the following section we consider the special case of
optical pupil detection, and how it is affected by head motion.

2 Optical eye detection

The optical properties of the eye itself enable a unique approach to
eye detection which exploits the fact that the eye is a natural retrore-
flector [Ebisawa and Satoh 1993; Morimoto et al. 2000]. This is
commonly observed as the ”red eye” effect seen in flash photog-
raphy, occurring when the light source is sufficiently close to the
camera lens that light reflected by its image on the retina returns and
enters the camera lens. By rapidly alternating on- and off-axis illu-
mination, a pair of images can be obtained which are nearly iden-
tical except for the pupil region; subtracting these images results in
an image in which the pupils are prominent, greatly simplifying the
machine vision problem.

There are a variety of ways in which the two illumination chan-
nels can be multiplexed. One early system [Grace et al. 2001] used
a pair of cameras, a beam splitter and narrow-band filters to im-
plementwavelength multiplexing, allowing simultaneous acquisi-
tion of bright- and dark-pupil images. A single-camera solution
using wavelength multiplexing has been demonstrated [Fouquet
et al. 2004], using a custom sensor chip equipped with a checker-
board array of filters. While this approach is elegant, the sensors
are not commercially available, and so it is unavailable to most
would-be users. A more common approach that is amenable to a
single-camera system istemporal multiplexing, in which the illu-
minator channels are energized in alternation, synchronized with
the camera’s frame rate. Temporal multiplexing requires additional
circuitry for dynamic control of the illuminators, and more compli-
cated software to correctly reject artifacts arising from head motion,
which we will explore in this section.

We have previously incorporated a stereo pair of wide-field cam-
eras equipped with such an active illumination system into a multi-
camera platform for monitoring workstation use [Brolly and Mul-
ligan 2004]. Our system employs standard analog cameras out-
putting interlaced video, with field-rate alternation of illuminator
channels, as in Ebisawa and Satoh [1993]. This system works quite
well for eye acquisition when the head is still. Because the two illu-
minator channels are alternated in time, however, the system suffers
from motion artifacts (see figure 1). One approach that has been
employed to reduce the deleterious effects of head motion in this
situation is to measure the motion in the field and shift one of the
images prior to computing the difference image [Ebisawa 2009].
Here we present an alternative approach that does not depend on
measurement of image motion. The key to our method is the ob-
servation that the motion artifacts differ in polarity forwithin-frame
andacross-frame difference images.

Figure 1 shows a series of images obtained with this system during
a lateral head movement. The top two rows show the raw images,
with bright pupil illumination delivered during the odd fields, and
dark pupil illumination delivered during the even fields. The third
and fourth rows show the difference images: the third row shows
the ”within frame” difference, in which the even field of the current
frame is subtracted from the odd field of the current frame, while
the fourth row shows the ”across frame” differences, in which the



Figure 1: A series of images from a wide-field camera equipped with an active illumination system. Bright pupil illumination is provided
during odd fields, while dark pupil illumination is provided during even fields. Within-frame difference images are obtained by subtracting
the two fields from a single frame, while across-frame difference images are obtained by subtracting fields from different frames. These two
types of difference images show different types of motion artifacts, which may be in large part suppressed by taking their product, as shown
in the bottom row. To enhance visibility, all difference images have been inverted, blurred, and normalized.

second (even) field of the previous frame is subtracted from the first
(odd) field of the current frame. The difference images are clipped
from below at zero, in order to suppress regions where the dark
pupil image is brighter than the bright pupil image. The difference
images have been inverted and slightly blurred to enhance visibility
in the present reproduction.

To get the most up-to-date estimate of the pupil location, we should
use the most recently acquired pair of bright- and dark-pupil im-
ages. But, as illustrated in figure 1, the temporal ordering of
the bright- and dark-pupil fields alternates, and so the polarity of
motion-induced artifacts alternates as well. The half-wave rectifi-
cation performed after the differencing suppresses roughly half of
the motion-induced artifacts; in figure 1 the head is moving to the
left, and so strong motion-induced artifacts are seen at the left edge
of the head in the within-frame differences, and on the right edge
of the head in the across-frame differences. Because a particular
head-edge artifact is in general only present in one of the two types
of difference image, we are able to eliminate most of them (and
reduce the strength of the remainder relative to the eye signals) by
pixel-wise multiplication the pair of difference images derived from
a single bright-pupil image. We can express this more formally as
follows: let oi and ei represent the odd and even fields (respec-
tively) from framei. We further letwi andai represent the within-
and across-frame differences, respectively, and letci represent the
combined difference image. Then

wi = max(oi − ei,0), (1)

ai = max(oi − ei−1,0), and (2)

ci = aiwi, (3)

where the all vector operations are understood to represent the cor-
responding pixel-wise operation on the images.

It can be seen in figure 1 that the combined difference image has a
strong signal in the eye regions, and has reduced the strength of the
motion artifacts. The source of the eye signal in this case can be
quite different than in the case of a stationary head; when the head
and eyes are still, theonly difference between the two images will
be the brightness of the pupil region - the glints (often the brightest
part of the image) will cancel. When the head and/or eye is in
motion, on the other hand, the glints will not cancel each other; but
when our goal is to simply find the eye (as opposed to accurately
segmenting the pupil region), then this is not a problem: because the
glint in the bright pupil image can be expected to be brighter than
anything else with which it might be (mis)aligned, we are likely
to get a strong signal in the difference image even when the pupil
signal is degraded.

We have performed a preliminary evaluation of the technique using
a video sequence captured while a subject executed voluntary, side-
to-side head movements, ranging from slow to as fast as possible.



Figure 2: Proportion of frames in which both eyes were correctly
localized as a function of average head speed, for four algorithms,
based on: single inter-frame differences (inverted triangles); dif-
ference images with a restricted search region (upright triangles);
Gaussian curvature of difference image (squares); and Gaussian
curvature with a restricted search region (diamonds).

The imaging configuration was similar to that shown in figure 1,
with the head taking up roughly half the width of the frame (about
300 pixels), and an effective frame rate of 60 Hz after deinterlacing.
Difference images were computed, and blurred slightly. Our base-
line algorithm was to search for the first two local maxima in the
blurred difference image. While this simple procedure performs
satisfactorily when the head is still, it breaks down as significant
head motion is encountered (see figure 2). A couple of simple en-
hancements can improve performance somewhat: first we can re-
strict the search area for each eye to a small neighborhood centered
on the previous position (in our example we used a radius of 7 pix-
els, larger than the highest head speed). Secondly, we can apply
a transformation to the difference image which accentuates punc-
tate features while suppressing linear features; this is motivated by
the observation that many of the most severe motion artifacts occur
around the edges of the face and are elongated. The transformation
we chose was Gaussian curvature [Zetzsche and Barth 1990; Barth
et al. 1998], a combination of second derivatives which is zero for
linear features but responds strongly to spots and corners. We can
see in figure 2 that, while application of the curvature operator does
produce a performance benefit, the greatest benefit comes from as-
suming the eyes are not far from their previous locations. This too
breaks down, however, at moderate head speeds.

Figure 3 shows similar results for various combinations of within-
and across-frame differences. Simple combination of difference
images (as illustrated in figure 1) produces a significant improve-
ment over single difference images, but still fails frequently. The
within- and across-frame combination can be applied to curvature
images as well, and some improvement is seen. But as was the case
for the simple differences, restriction of the search area produces
the largest single improvement; for our test sequence, we obtain
near-perfect performance for combination of curvatures of within-
and across-frame difference images, with a search area restricted to
a neighborhood about the previous location.

3 Modeling natural head movements

In the previous section, we saw that the eye regions can be tracked
much more robustly when they are assumed to be relatively near
to their previous locations. In order to intelligently determine the

Figure 3: Similar to figure 2, for four algorithms in which within-
and across-frame difference images were combined as illustrated
in figure 1: combined difference images (inverted triangles); com-
bined difference images with a restricted search area (upright trian-
gles); combined curvature images (squares); and combined curva-
ture images with a restricted search area (diamonds).

size of the search window, it is therefore useful to know something
about the expected movements of the subjects. Such data are also
useful for determining parameters of a remote gaze tracking sys-
tem, such as field-of-view and steering speed. To this end, we an-
alyzed a large corpus of video, provided to us by a research group
studying team decision-making [Fischer et al. 2007]. In this study,
5-member teams participated in a (simulated) tele-robotic search
mission, by manning console stations in each of 5 separate exper-
imental chambers. Video footage of each subject’s work session
was recorded by a video camera mounted above their workstation,
with a horizontal field-of-view of about 40 degrees. Although the
subjects in the videos assume a variety of seated poses while at
work, their detected faces typically occupied between roughly one-
quarter to one-third of a frame width (80 - 106 pixels). The corpus
made available to us consisted of 258 separate recordings, compris-
ing a total of 793 hours (42.8 million images). The recordings had
already been subjected to some preprocessing; as received by us,
each movie had a resolution of 320 x 240, at a temporal sampling
rate of 15 frames per second.

To detect the location of the face in each frame, we used a boosted
cascade of classifiers [Viola and Jones 2001]. We used the imple-
mentation provided in the OpenCV library [Lienhart and Maydt
2002]. Exactly 1 face was found in approximately 50.9% of the
frames analyzed. The recordings included periods that were not
part of the study; typically recordings began with an empty booth,
depicted a brief flurry of activity as the subject and experimenter
entered, and then a relatively long period with the subject seated at
the console. So, some fraction of the frames in which no faces were
detected are indeed correct rejections. However, the face detector
as implemented is trained to detect frontal faces, and fails when the
head is turned, presenting an oblique or profile view. Similarly, it
fails when the subject tilts his or her head down (for example, to
read a clipboard held in the lap). We feel that these misses do not
greatly diminish the value of the dataset, because in these cases a
gaze tracking system would similarly be hard-put to make sense of
the image.

The outputs of the face detector are the location and size of a square
window containing the face. From the raw data, we computed the
inter-frame displacement of the center of the face-box, for all pairs
of temporally contiguous frames in which exactly one face was de-



Figure 4: Plot showing histogram for inter-frame face displace-
ment, computed from a large corpus of video data using the Viola-
Jones face detector, as implemented in OpenCV.

tected in each frame of the pair. Because the detector missed the
face on some frames when the subject was present, there are gaps
in the records, and the number of transitions available for analysis
is somewhat less than the number of frames. The number of tran-
sitions analyzed was approximately 47.1% of all transitions, corre-
sponding to 92.4% of the frames in which one face was detected.
The results are shown as a histogram of displacements in figure 4.
Face displacements in pixels have been converted to face-widths by
dividing each displacement by the average of the box sizes in the
two frames making up the pair. Note that the vertical axis is loga-
rithmic; the bulk of the displacements are at or near zero, reflecting
the fact that the subjects sat still more than they moved.

It can be seen that the central portion of the distribution in figure 4
is within ±1 head-width per second. (Because the voluntary head
movements shown in figures 2 and 3 do not exceed 2 head-widths
per second, we assume that the tails of the distribution shown in
figure 4, which extend beyond the range plotted, represent large
jumps of the face detector to false targets.) Assuming that an eye-
width is about one fifth of a head-width, this corresponds to 5 eye-
widths per second, or 0.083 eye-widths per field of 60 Hz video. For
a high-magnification image in which the eye fills a frame having an
angular extent of 4 x 3 degrees (corresponding to a camera located
at arm’s length from the subject), we see that this corresponds to an
angular rate at the camera of 0.33 degrees per field, or 20 degrees
per second. This provides a performance goal for robotic cameras
used for remote gaze tracking.

4 Conclusion

In this paper we have demonstrated an novel approach to active il-
lumination eye detection, that combines pairs of difference images
to reduce the effects of head movements. We have also examined
the movement statistics of users working in a naturalistic setting at
a computer console, and found that the majority of movements do
not exceed a speed of 1 head-width per second. This is therefore a
sensible target goal for a head-tracking system designed to keep the
eye region within the area of analysis in a remote gaze-tracking sys-
tem. By considering the camera field-of-view, and average distance
from the subject, we can appropriately size the search region when
repositioning the region-of-interest in a high-resolution image.
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