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In the human eye, all visual information must traverse
the retinal ganglion cells. The most numerous subclass,
the midget retinal ganglion cells, are believed to underlie
spatial pattern vision. Thus the density of their receptive
fields imposes a fundamental limit on the spatial
resolution of human vision. This density varies across the
retina, declining rapidly with distance from the fovea.
Modeling spatial vision of extended or peripheral targets
thus requires a quantitative description of midget cell
density throughout the visual field. Through an analysis
of published data on human retinal topography of cones
and ganglion cells, as well as analysis of prior formulas,
we have developed a new formula for midget retinal
ganglion cell density as a function of position in the
monocular or binocular visual field.

Introduction

The spatial resolution of human photopic vision is
limited by optical blur, and beyond that by spatial
sampling by retinal neurons. The initial sampling is by
the inner segments of the cone photoreceptors, and
subsequent resampling of their signals is performed, via
various interneurons, by the retinal ganglion cells
(RGC). These are the output cells of the human eye and
consequently their properties limit the signal that travels
to the rest of the brain. One class of these cells, the
midget retinal ganglion cells (mRGC) are the most
numerous; near the fovea they appear to sample a single
cone while in peripheral retina they gather signals from
multiple cones (Ahmad, Klug, Herr, Sterling, & Schein,
2003; Dacey, 1993; Dacey & Petersen, 1992; Goodchild,
Ghosh, &Martin, 1996; Kolb & Dekorver, 1991; Schein,
1988). In consequence the mRGC likely set an upper
bound on the spatial resolution of human vision,
especially at low temporal frequencies (Hirsch & Curcio,
1989; Merigan & Eskin, 1986; Merigan & Katz, 1990;
Rossi & Roorda, 2010; Thibos, Cheney, &Walsh, 1987).

From a sampling point of view, the critical metric of
the mRGC lattice is the local density or spacing of
adjacent mRGC receptive fields (mRGCf). Because this

spacing varies across the visual field, and because of its
fundamental role in modeling human visual spatial
processing, it would be valuable to have a formula for
mRGCf spacing as a function of location in the visual
field.

An earlier formula for mRGCf density was devel-
oped by Drasdo, Millican, Katholi, and Curcio (2007).
While this formula was an important contribution, it
was largely based on psychophysical results (acuity vs.
eccentricity). Since we would like to use our formula to
make psychophysical predictions, we sought to develop
a formula based only on anatomical data. Barten
(1999) also produced a formula for RGC density along
an average meridian, but did not provide a derivation
for his result.

Dacey (1993) also provided a figure depicting
estimated average midget ganglion cell density as a
function of eccentricity. However, his estimates are
based on highly variable estimates of dendritic field size
and an assumption of unit coverage (the product of
density and field area) throughout the visual field. Also,
separate estimates for the four meridians are not
provided. Nonetheless, we show in the Discussion that
our new formula is consistent with his empirical results.

The approach that we have taken is to seek a simple
analytic formula that approximately satisfies known or
probable anatomical constraints.

Curcio, Sloan, Kalina, and Hendrickson (1990)
measured the distribution of cone photoreceptors across
the retina in a set of eight human eyes. Consistent with
earlier fragmentary reports (Osterberg, 1935), they
found that density declined rapidly with eccentricity.
They also described substantial meridional asymmetries,
and large individual differences in peak density.

In a second paper six of those eyes, along with one
additional eye, were used to measure the distribution of
retinal ganglion cells (Curcio & Allen, 1990). This
distribution also varies markedly with eccentricity, but
unlike the cone distribution, it does not peak at the
fovea. This is because in a central retinal zone the
ganglion cell bodies are displaced centrifugally some
distance from the inner segments of the cones to which

Citation: Watson, A. B. (2014). A formula for human retinal ganglion cell receptive field density as a function of visual field
location. Journal of Vision, 14(7):15, 1–17, http://www.journalofvision.org/content/14/7/15, doi:10.1167/14.7.15.

Journal of Vision (2014) 14(7):15, 1Ð17 1http://www.journalofvision.org/content/14/7/15

doi: 10.1167/14.7.15 ISSN 1534-7362! 2014 ARVOReceived July 22, 2013; published June 30, 2014

mailto:andrew.b.watson@nasa.gov
mailto:andrew.b.watson@nasa.gov


they are connected through the bipolar cells, and thus
from their receptive fields. This displacement zone
continues up to eccentricities of around 138–178,
depending on the meridian (Drasdo et al., 2007). The
extent of ganglion cell displacement as a function of
eccentricity of the cell body has been measured in
primate (Schein, 1988; Wassle, Grunert, Rohrenbeck,
& Boycott, 1990) and human (Drasdo et al., 2007). In
human these displacements are as large as 2.28. As a
result, the peak RGC density occurs some 48–58away
from the center of the fovea. Thus the local density of
the cell bodies does not reflect the local density of the
RGC receptive fields (RGCf).

However, the RGC distribution combined with
several other constraints does allow a plausible
reconstruction of the distribution of RGCf. The
constraints that we consider are:

1. Along a given meridian, the cumulative distribution
of RGC and RGCf must agree outside the
displacement zone.

2. In the fovea, it is likely that each cone connects (via
bipolars) to exactly two mRGC (Kolb & Dekorver,
1991).

3. Near the fovea midgets constitute most but not all of
the ganglion cells. The ratio RGC/mRGC is given as
about 1.12 by Drasdo et al. (2007).

4. The hypothetical distribution of RGCf must be
consistent with the measured distribution of RGC
outside of the displacement zone.

Making use of these constraints, this report derives a
new formula for RGC density as a function of
eccentricity along the four principal meridians, and
more generally of position on the retina or in the visual
field in degree coordinates.

The derivation relies on transformations from retinal
coordinates in mm to degree, based on a model eye
(Drasdo & Fowler, 1974) and an assumed offset between
optical and visual axes (Charman, 1991), which are
described in Appendix 6. We also place in Appendix 5 a
number of formulas relating variousmetrics of points in a
hexagonal sampling lattice, such as spacing, density, and
row spacing. We also provide (see Appendix 2) with this
report a supplementaryfileofMathematica functions that
implement our formulas (Wolfram Research Inc., 2013).
Lastly,weprovidea simple interactivedemonstration that
computes RGCf density and spacing at a selected visual
field location (see Appendix 1).

Conventions regarding meridians,
locations, and the visual center

In retinal anatomy locations are often specified as a
distance from a retinal center along one of the four

principal meridians. Because the topography is not
radially symmetric, or even bilaterally symmetric,
measurements differ along the four meridians. The
naming of the meridians is a possible source of
confusion, since different conventions are typically used
for retinal anatomy and visual fields. Specifically, the
nasal retina (the part nearest the nose) images the
temporal visual field (the part away from the nose), and
vice versa, in both eyes. We avoid this confusion by
always referring to the visual field locations, even when
discussing anatomy. We order the meridians temporal,
superior, nasal, inferior, consistent with increasing polar
angle in the visual field of the right eye, and assign them
indexes of 1–4. When cartesian coordinates are used,
positive x-coordinates refer to the temporal visual field
of either eye, or the right binocular visual field.

A further possible confusion is that in the right eye,
the temporal visual field is the right visual field, while in
the left eye, it is the left visual field. Thus when we
compute binocular visual fields, we combine the
temporal field of the right eye with the nasal field of the
left eye, and vice versa.

A final possible confusion is the definition of the
retinal center. Remarkably, there appears to be no
consistent term for this concept. What we want is the
‘‘visual center,’’ defined essentially as the intersection of
the visual axis with the retina. It is not the same as the
‘‘fovea’’ which is an area, not a point. It may well
correspond to the point of highest cone density, and is
operationally defined as the retinal location that images
a fixated point, sometimes called the ‘‘preferred retinal
locus of fixation’’ or PRLF (Rossi & Roorda, 2010).
We will assume that anatomical measurements and
visual field locations are referenced to this common
visual center.

Notation

In Appendix 3 we provide a more complete review of
notation, but here we introduce some general conven-
tions. The symbol r will indicate eccentricity in degree,
d will indicate density in deg!2, and s will indicate
spacing (of adjacent cells or receptive fields) in degrees.
We use subscripts g, m, and c to denote RGC, mRGC,
and cones respectively, and gf and mf to denote RGC
and mRGC receptive fields. A particular meridian will
be indicated by an integer index k.

Cone densities

Curcio et al. (1990) measured cone photoreceptor
density across the retina in eight human eyes. Average

Journal of Vision (2014) 14(7):15, 1Ð17 Watson 2

http://www.journalofvision.org/site/misc/cdf/JOV-14-07-14-s01.html


data are provided in tables of cone densities in cones/
mm2 in the four principal meridians at each of 34
eccentricities in mm (Curcio, 2006). Using the conver-
sion formulas described in Appendix 6, we have
converted the densities to cones/deg2 as a function of
eccentricity in degree as shown in Figure 1. Writing
dc(r, k) for the cone density at eccentricity r degree
along meridian k, we note that the foveal peak is dc(0,
1)¼ dc(0)¼ 14,804.6. This peak density is plotted at the
upper left on this log-log plot.

RGC densities

Curcio and Allen (1990) measured local density of
RGC cell bodies in seven retinas (including six of those
used above to measure cone densities). Curcio (2013)
has provided tables of average RGC densities in RGC/
mm2 in the four principal meridians at each of 35
eccentricities in millimeters. We have again converted
these values to densities in RGC/deg2 as a function of
eccentricity in degree, and the results are plotted in
Figure 2. We omit one point in the inferior meridian
with a density below 1. The peak density of about 2,375
RGC/deg2 occurs not at the foveal center but at an
eccentricity of about 3.78. This is because, as noted
above, ganglion cell bodies within a displacement zone
extending out as far as 178are displaced centrifugally
from their cone inputs. Thus the RGC densities within
this zone cannot be used directly as an estimate of the
densities of the RGCf.

The first constraint noted above is that along a given
meridian, the cumulative distribution of RGC and
RGCf must agree at the limit of the displacement zone.
In Figure 3 we show the estimated cumulative number
of RGC as a function of eccentricity along each
meridian for eccentricities up to 208. For each meridian,

the counts assume a radially symmetric density
function, and are produced through linear interpola-
tion of the data shown in Figure 2. To compute
cumulative counts as a function of eccentricity, we
integrate density at eccentricity r multiplied by 2pr to
account for the increasing area. The circular point on
each curve marks the cumulative density at the
approximate limit of the displacement zone (11 for
temporal, 17 for the others). When we construct a
candidate function for the density of RGCf, its
cumulative value must approximately agree at these
points. In other words, the total number of receptive
fields must equal the total number of cell bodies within
the displacement zone.

Foveal density of RGC receptive
fields

If each foveal cone drives exactly two midget retinal
ganglion cells, as specified in our second constraint,

Figure 1. Cone density as a function of eccentricity (Curcio et al.,
1990). Foveal density is indicated by the line segment at the
upper left. The gap in the temporal meridian corresponds to the
blind spot.

Figure 2. RGC density as a function of eccentricity in four
meridians (Curcio & Allen, 1990). The gap in the temporal
meridian corresponds to the blind spot.

Figure 3. Cumulative total number of RGC along four meridians.
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then the foveal density of midget retinal ganglion cell
receptive fields must be twice the cone density,

dmf ð0Þ ¼ 2dcð0Þ: ð1Þ

If midget cells constitute a fraction f(r) of all
ganglion cells at eccentricity r, then

dg f ð0Þ ¼ fð0Þ!1dmf ð0Þ

¼ 2fð0Þ!1dcð0Þ ð2Þ
As noted below, f(0)!1 has been estimated as 1.12

(Drasdo et al., 2007) or 1.09 (Dacey, 1993). For reasons
outlined below, here we adopt the value of 1.12, in
which case dgf (0)¼ 2 á 1.12 á 14,804.6 ¼ 33,163.2
deg!2.

Density of RGC receptive fields

We now attempt to discover a function that will
describe RGCf density as a function of eccentricity and
satisfy the constraints outlined in the Introduction. For
each candidate function, we optimized the several
parameters with respect to an error function consisting
of the sum of the squared errors between empirical and
computed log densities for eccentricities outside the
exclusion zone, and the weighted squared log of the
ratio of empirical and computed cumulative counts
within the exclusion zone (see points in Figure 3). This
ensures a reasonable fit to peripheral RGC densities,
and to the cumulative counts. We used log densities in
the fit to accommodate the very wide range of densities,
and to avoid giving the larger densities undue influence
in the fit. We explored a wide range of functions,
leading to the best-fitting one described below.

Since the work of Aubert and Foerster (1857) it has
been observed that many measures of visual resolution
decline in an approximately linear fashion with
eccentricity, at least up to the eccentricity of the blind
spot (Strasburger, Rentschler, & Juttner, 2011). Be-
cause resolution may depend on receptive field spacing,
and since density is proportional to the inverse of
spacing squared (see Appendix 5), this suggests that
density might vary with eccentricity as

dg f ðrÞ ¼ dg f ð0Þ 1þ r

r2

! " !2

ð3Þ

where dgf (0) is the density at r ¼ 0, and r2 is the
eccentricity at which density is reduced by a factor of
four (and spacing is doubled). By itself, this did not
provide a good fit, especially at larger eccentricities.
However we found that a simple modification, the
addition of an exponential, yielded an acceptable fit.
The new function is given by

dg fðr;kÞ ¼ dg f ð0Þ

á ak 1þ r

r2;k

! " !2

þð1! akÞexp ! r

re;k

! "" #

ð4Þ
where ak is the weighting of the first term, and re,k is the
scale factor of the exponential. The meridian is
indicated by the index k. We have fit this expression
separately for each meridian and optimized parameters
relative to the error function described above. The
results are shown in Figure 4. For each meridian, we
show the average RGC densities reported by Curcio
and Allen (1990), along with the fitted function. The
vertical gray line in each figure shows the assumed limit
of the displacement zone. Note that only data points
outside the displacement zone are used in the fit. The
estimated parameters, predicted cell counts, and fitting
error are given in Table 1.

The fits are good for three of the four meridians.
Both the peripheral densities and the cumulative counts
are in close agreement. The agreement is less good for
the inferior meridian, largely due to the unusual
distribution of the far peripheral densities. The
anomalous bump at around 608and subsequent rapid
decline are difficult to fit with simple analytic functions.
For comparison, in Figure 5 we show the RGCf density
formula in the four meridians, replotted from Figure 4.

RGC displacement

One test of our formula for the density of RGCf is to
compare the predicted density of RGC within the
displacement zone with the actual densities measured
by Curcio and Allen (1990). To generate these
predictions we make use of measured displacements
from cone inner segment to retinal ganglion cell body in
six human retinas along the horizontal meridian
(Drasdo et al., 2007). For the separate nasal and
temporal meridians, they provided a mathematical
formula to describe the average displacement as a
function of RGC eccentricity. This can be converted to
a function of cone inner segment eccentricity. A
difficulty with this function is that it does not provide
the correct result at an eccentricity of zero. It should
indicate the displacement corresponding to the RGC
closest to the fovea, but instead yields a value of 0.
Rather than use their formula directly, we have instead
constructed a new formula to describe displacement as
a function of cone inner segment eccentricity. We
constructed this new function to be a reasonable fit to
the function of Drasdo but to also yield a displacement
of h(0) . 08at 08eccentricity. There is some
disagreement about the value of h(0). Drasdo stated
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that the first RGC are located 0.15 to 0.2 mm (0.538–
0.718), whereas Curcio provides nonzero RGC densities
at eccentricities as small as about 0.28 (see Figure 2).
We have assumed a value of 0.58, but a value of 0.3
gives very similar results.

The displacement function we used is the probability
density function of the generalized Gamma distribution
(multiplied by the gain d), given by

hðrÞ ¼ d
ce!

r!l
bð Þ

c
r!l
b

# $ac!1

bCðaÞ
: ð5Þ

We attach no particular significance to the function
or its parameters. It serves only as a device to displace

hypothetical RGC cell bodies, as will be discussed
below. This new function is shown in Figure 6, along
with the corresponding functions provided by Drasdo
for the two meridians. The parameters are provided in
Table 2. Note that only three of the parameters are
independent, the other two are constrained by the value
of h(0) and by the peak value, which we set to the
maximum of the fitted values.

Next we generated a population of RGC with
eccentricities based on our density formula (Equation
4). Eccentricities were random within annuli of 0.058.
We then displaced each RGC centrifugally according to
the displacement function (Equation 5, Figure 6). The
density of the displaced cells was then computed.

Figure 4. Ganglion cell density as a function of eccentricity in four meridians. Data points are from Curcio and Allen (1990). The solid
curve is the fit of Equation 4 to the points outside the displacement zone. The dashed gray line indicates the approximate limit of the
displacement zone. The density at eccentricity of zero is indicated by the line segment at the upper left.

Meridian k a r2 re

Data count
(á 1000)

Model count
(á 1000) Error rz

Temporal 1 0.9851 1.058 22.14 485.1 485.7 0.23 11
Superior 2 0.9935 1.035 16.35 526.1 528.9 0.12 17
Nasal 3 0.9729 1.084 7.633 660.9 661.1 0.01 17
Inferior 4 0.996 0.9932 12.13 449.3 452.1 0.93 17

Table 1. Parameters and error for fits of Equation 4 in four meridians. Note: Also shown are measured and predicted cumulative
counts along each meridian within the displacement zone. The next-to-last column shows the fitting error outside the displacement
zone. The last column indicates the assumed limit of the displacement zone.
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Results are shown in Figure 7. Note that this test can
only be conducted on the two horizontal meridians
along which displacement was measured. The actual
and predicted densities are in reasonable agreement. In
one case, the peak densities are too low and in the
other, too high, but the height and shape of the
distributions are approximated. Note that the dis-
placements and densities were estimated from a
different (but overlapping) set of eyes, and thus
complete agreement is not expected.

Midget RGCf density

Midget cells make up most but not all of the retinal
ganglion cells, and their proportion varies with
eccentricity. In general, the density of midget retinal
ganglion cell receptive fields is given by

dmfðr; kÞ ¼ fðrÞdg fðr; kÞ ð6Þ

where f(r) is the fraction of retinal ganglion cells that

are midgets, as introduced in Equation 2. Two
estimates of f(r) have been provided in the literature.

Dacey (1993) estimated mRGC dendritic field
diameters at various eccentricities in whole mounts of
human retina. Careful examination of dendritic trees at
several midperipheral and peripheral locations indi-
cated a coverage (dendritic field area á density) of
approximately 1. By assuming that this coverage
remained constant at 1 throughout the retina Dacey
estimated the density of midget cells as the inverse of
dendritic field area. The ratio of that density to Curcio
and Allen’s (1990) estimates of RGC density (beyond
about 3.58) provided an estimate of the fraction of
RGC that are midget cells. These estimates of Dacey
are shown as the points in Figure 8. They range from
over 95% near the fovea to less than 50% in the far
periphery.

A second estimate of f(r) was provided by Drasdo et
al. (2007) as the formula

fðrÞ ¼ fð0Þ 1þ r

rm

! " !1

ð7Þ

where f(0) ¼ 1/1.12 ¼ 0.8928 and rm ¼ 41.038. The
formula is shown by the curve in Figure 8. This formula
was derived from iterative fit of a more elaborate
expression involving both psychophysical measures and
anatomical measures (Drasdo et al., 2007). Drasdo and
Dacey’s measures agree generally that the fraction
declines with eccentricity, and roughly agree in foveal
and peripheral asymptotes.

One problem with Dacey’s method is that from
about 3.58 to 178 it includes both RGC densities and
dendritic field measurements of displaced cells. Hence
his estimates at those eccentricities may not reflect the
fraction of receptive fields belonging to midget cells.
For this reason, and until better estimates can be
obtained, we adopt Drasdo’s formula to compute the
density of mRGCf. Combining Equations 2, 4, 6, and
7, we have

Figure 6. Modeled displacement functions (solid curve) and points from the formula of Drasdo et al. (2007).

Figure 5. RGCf density formula as a function of eccentricity for
four meridians, replotted from Figure 4.
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dmfðr; kÞ ¼ 2dcð0Þ 1þ r

rm

! " !1

á ak 1þ r

r2;k

! " !2

þð1! akÞexp ! r

re;k

! "" #

:

ð8Þ

This formula is plotted in Figure 9 for the four
meridians.

mRGCf spacing

On the assumption of hexagonal packing (Equation
A4), the spacing of adjacent midget receptive fields is
given by

smfðr;kÞ ¼
%%%%%%%%%%%%%%%%%%%%%%%

2
%%%
3
p

dmfðr; kÞ

s

: ð9Þ

Spacing at a binocular horizontal eccentricity can be
computed by averaging densities at corresponding
eccentricities in temporal and nasal meridians and
converting to spacing. We can also compute the
‘‘mean’’ spacing, the average of all four meridians, by
averaging densities and converting to spacing. These
formulas for spacing are plotted in Figure 10. We show
the individual meridians and the ‘‘Horizontal’’ and
‘‘Mean’’ versions.

Note that the midget RGC are composed of
approximately equal numbers of ‘‘on’’ and ‘‘off’’ center
cells (we neglect reports of asymmetry between the two

types). Typically we are concerned with the spacing
within one class, in which case density is halved and the
spacings should be multiplied by = 2. In Figure 11 we
show the formula scaled in this way for eccentricities
between 08and 108, and we express the spacings in
arcmin.

Averaged across meridians, the computed spacing of
mRGCf is very nearly linear (R2¼ 0.9997). This allows
us to write the following simple approximation for
average spacing in either on- or off-center mosaic,
where both s and r are expressed in degrees.

60s ¼ 0:53þ 0:434r ð10Þ

This convenient result is the due to the form of
Equation 4, and the fact that the second exponential
term does not have much effect for eccentricities less
than 308.

Extension to arbitrary retinal
locations

To this point we have developed formulas describing
spacing as a function of eccentricity along each of the
four principal meridians. We would like to extend these
formulas to describe spacing at an arbitrary point {x,
y} in the retina. To do this we make the assumption
that within any one quadrant of the retina the iso-
spacing contours are ellipses. This is consistent with the
idea that spacing changes smoothly with the angle of a
ray extending from the visual center. An example is
shown in Figure 12. The eccentricities at the intersec-
tions of the ellipse with the two enclosing meridians are
rx and ry.

Under the ellipse assumption, we can write

x

rx

! " 2

þ y

ry

! " 2

¼ 1 ð11Þ

Meridian a "b(deg) c d l(deg)

Temporal 1.8938 2.4598 0.91565 14.904 !0.09386
Nasal 2.4607 1.7463 0.77754 15.111 !0.15933

Table 2. Parameters of the displacement function (Equation 5
and Figure 6).

Figure 7. Modeled and measured density of displaced retinal ganglion cells in temporal (left) and nasal (right) meridians.
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And because they are on an iso-spacing curve,

sðrx; 1Þ ¼ sðry; 2Þ ð12Þ

Given numerical values for x and y, we can solve
Equations 11 and 12 together to find numerical
solutions for rx and ry, and then we can compute

sð x; yf gÞ ¼ sðrx; 1Þ ð13Þ

To avoid solving a system of equations, we have
found that the following approximation works well.
Let rxy be the radial eccentricity of the point {x, y},

rxy ¼
%%%%%%%%%%%%%%%
x2þ y2

p
ð14Þ

Then we compute

sð x; yf gÞ ¼

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x

rxy
sðrxy; 1Þ

! " 2

þ y

rxy
sðrxy; 2Þ

! " 2
s

¼ 1
rxy

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x2sðrxy; 1Þ2þ y2sðrxy; 2Þ2

q
ð15Þ

This approximation is always within 1.7% of the
value obtained by Equations 10 through 12. Equation
15 is easily generalized to work for arbitrary retinal
quadrants. Since the sign of the horizontal coordinate
is arbitrary, we define positive x values to mean the
temporal visual field. This corresponds to the right
visual field for the right eye, and the left visual field for
the left eye.

Extension to arbitrary binocular
visual field locations

Equation 15 computes mRGC spacing at locations
specified in visual field coordinates in one eye. In
psychophysical modeling of natural vision, it is useful
to compute spacing at locations specified in the
binocular visual field. To do this we compute the
spacing at corresponding visual field locations in the

Figure 8. Estimated fraction of RGC that are midget cells as a
function of eccentricity.

Figure 9. mRGCf density formula as a function of eccentricity
(Equation 8).

Figure 10. Formula for mRGCf spacing.

Figure 11. Formula for on or off mRGCf spacing for eccentricities
08–108.
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two eyes, convert them to densities (Equation 2),
compute their mean, and convert back to spacing
(Equation A4). After simplifying, we obtain the
following result for binocular spacing sB:

sBð x; yf gÞ ¼
%%%
2
p

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sð !x; yf gÞ2sð x; yf gÞ2

sð !x; yf gÞ2 þ sð x; yf gÞ2

s

: ð16Þ

With this function we can compute a plot of the
Nyquist frequency over the binocular visual field, as
shown in Figure 13. In this calculation we have divided
the value by = 2, based on the assumption of
overlapping lattices of on- and off-center cells. The
peak value is 65.4 cycles/deg. Because there is some
ambiguity about the best way to combine the densities
of the two eyes, in our supplementary materials we also
provide functions that compute the maximum density,
or the total density of the two eyes.

Discussion

Ratio of midget RGC and cones

In Figure 14 we plot the ratio between mRGCf
densities computed from Equation 8 and cone densities
reported by Curcio et al. (1990). Although we did not
impose this as a constraint in estimating a function for
the density of ganglion cells, the ratio remains close to 2
for the central several degrees. This is roughly
consistent with Dacey’s report that up to about 48
mRGC dendritic fields remain at a minimum size
appropriate to connection with a single bipolar, and
thereby to a single cone. Beyond about 68, he found
that dendritic fields enlarge and begin to show clusters
suggesting input from multiple cones, and consistent
with the decline in the ratio in Figure 14. Our result is
also consistent with Schein’s estimate that the ratio
remains constant out to about 2.58in primates (Schein,
1988).

Comparison with Drasdo et al. (2007)

In Figure 15 we compare mRGCF spacing computed
from our formula to densities computed from the
formula of Drasdo et al. (2007), converted to spacings
by Equation A4. While there is considerable agreement,
there are some significant discrepancies. In particular
the curves for the superior and inferior meridians are
nearly interchanged in the two formulas. Our formula
is consistent with Curcio and Allen (1990) who clearly
show higher density (smaller spacing) in superior versus
inferior meridians beyond about 68(see Figure 2), while

Figure 12. A hypothetical iso-spacing curve in one quadrant,
including a point {x, y} and points on the two enclosing
meridians.

Figure 13. Nyquist frequency over the binocular visual field based on the density formula and assuming separate and equal on- and
off-center populations.
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Drasdo’s formula shows the opposite, for unknown
reasons. We also note that the Drasdo formula is
defined only up to 308, while ours extends at least as far
as 908.

Comparison with dendritic field diameter

Dacey measured dendritic field diameters of midget
ganglion cells in human retina (Dacey, 1993; Dacey &
Petersen, 1992). In Figure 16 we have reproduced his
Figure 4B, that shows diameter as a function of
eccentricity. The filled points are for the temporal
quadrant, open points are for the other quadrants.
Near the fovea, where mRGC connect to single cone,
we do not expect any relationship between field
diameter and cell spacing. However in the periphery,
Dacey found that within either the on- or off-center
lattice, spacing and diameter were about equal. This
allows us to compare his measures of diameter to our
spacing formula for equivalent eccentricities and
quadrants. Formula values for the temporal meridian
and the mean of the other three meridians are shown by

the colored curves in Figure 16. The computed spacing
is for either the on- or off-center lattice. The agreement
is reasonable, especially considering the sizable scatter
in measurements of diameter.

Comparison with acuity

Rossi and Roorda (2010) provide estimates of letter
acuity, expressed as minimum angle of resolution
(MAR) for five observers viewing targets under
adaptive optics conditions. The targets were at nasal
visual field locations between 08and 2.58. In Figure 17
we compare their results with the computed row
spacing, assuming separate on- and off-cell lattices. We
use separate lattices on the assumption that, at least
near the fovea, both an on and an off midget cell are
required to signal the signed value of local contrast. In

Figure 15. Comparison of formulas of Watson and Drasdo et al.
(2007) (dashed).

Figure 16. Dendritic field diameter as a function of eccentricity
for human mRGC as measured by Dacey (1993). Filled points
are for the temporal meridian; open points are for other
quadrants. Gray curve is Dacey’s estimate of the mean. Red and
blue curves show spacing calculated from our formula for the
temporal meridian or the mean of the other meridians.

Figure 17. Human letter acuity (points) along the nasal meridian
of five observers from Rossi and Roorda (2010) and row spacing
from our formula for the same meridian (line).

Figure 14. Ratio of mRGCf to cones as a function of eccentricity
based on the Watson formula for mRGCf density.
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addition, where each cone drives one on and one off
midget, we know the two midgets have the same
receptive field location. Specifically, the function
returned by Equation 9 is multiplied by 60 = 2 = 3 / 2¼
30 = 6 to reflect the halved density, conversion to row
spacing, and conversion to arcmin. The agreement is
excellent. This is not surprising, since Rossi and
Roorda previously showed good agreement with the
formula of Drasdo et al. (2007), to which ours is similar
for small eccentricities.

Estimates of peripheral acuity are complicated by the
possibility of aliasing. Anderson, Mullen, and Hess
(1991) attempted to bypass this problem by using
direction discrimination of drifting gratings. Their
results are plotted in Figure 18, along with calculations
of Nyquist frequency of the on- or off-center mRGCf
lattice from Equations 8 and A3. The agreement is
reasonable. One caveat regarding the comparison at r¼
0 is that these data were collected with Gabor targets
that extended (at half height) well over 0.58, so that
performance may reflect the averaging spacing over
that area. The precise relationship between mRGCf
spacing and acuity is beyond the scope of this paper
(Anderson & Thibos, 1999), here we only point to the
general agreement in both the shape and absolute level
of the calculations.

Comparison with Sjöstrand

In a series of papers Sj¬ostrand, Popovic, and
colleagues measured human RGC densities at eccen-
tricities from about 28 to 348eccentricity along the
vertical meridian in sectioned human retinas (Popovic
& Sj¬ostrand, 2001, 2005; Sj¬ostrand, Olsson, Popovic,
& Conradi, 1999; Sjostrand, Popovic, Conradi, &
Marshall, 1999). From these densities, using their own
estimates of displacement, the inferred RGC spacing
at various eccentricities. Their formula for conversion

from density to spacing actually yields the row spacing
(Equation A1) not the spacing between cells (Equation
A4), which is 2 / = 3 larger. Even taking this into
account, their values are about a factor 0.75 smaller
than those computed from our formula for the mean
of superior and inferior meridians. However their
values are also discrepant with Drasdo’s formula
(Figure 6) and with spacing estimated from Dacey’s
estimates of mRGC field diameter (Figure 16). Some
part of this discrepancy may arise from their formula
for displacement, which though similar in form is only
half the magnitude of ours or that of Drasdo, who has
also commented on this discrepancy (Drasdo et al.,
2007).

Popovic and Sj¬ostrand (2005) measured acuity of
three observers at eccentricities between 5.88and 26.48
in both eyes, one of which was subsequently enucle-
ated. Ganglion cell densities and spacings were
measured along the vertical meridian. Acuity (MAR)
was measured using high-pass resolution perimetry.
They found MAR was approximately proportional to
RGC spacing over the full range of eccentricities. The
constant of proportionality was rather large (4.24),
especially compared to the value of 1 we have used in
Figures 17 and 18. They note that correcting for the
low contrast of their target (0.25), and considering
only spacing in one class (on or off) of midget cells as
we have done, would lower the constant to 1.43. The
remaining discrepancy may be due to their low
estimates of spacing, as noted above. In general, their
results support the notion that psychophysical reso-
lution is governed by the mRGC spacing.

Midget fraction

Perhaps the least secure element of our formula is the
midget fraction, the function describing the fraction of
all ganglion cells that are midget as a function of
eccentricity. As noted above (Figure 8) there are
discrepancies between available estimates. We have
adopted the formula of Drasdo, but it is unclear
whether that is accurate, especially at very large
eccentricities, where it continues to descend to values as
low as 0.25. In the periphery, where his estimates are
arguably most accurate, Dacey’s estimates appear the
level off at about 0.5. Until more definitive estimates
are available, we will have to acknowledge the
speculative nature of this element.

Variability

I have based my formula on average densities of
cones and retinal ganglion cells (Curcio & Allen,

Figure 18. Human grating acuity (points) from Anderson et al.
(1991) and calculated Nyquist frequency of midget RGC.
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1990; Curcio et al., 1990). Curcio et al. (1990) note a
very large variation in peak cone density in their set
of nine eyes, ranging from 98,200 to 324,100 mm!2

(7,385 to 24,372 deg!2) (coefficient of variation
; 0.46). When two anomalous eyes are excluded, the
lower bound only increases to 166,000 mm!2 (12,483
deg!2). This variation largely disappeared at eccen-
tricities beyond 18, so that the total number of cones
within a radius of about 3.68 (or over the entire
retina) was nearly constant (coefficient of variation
; 0.1). However, more recent density estimates from
in vivo measurement show a fairly consistent coeffi-
cient of variation (; 0.2) regardless of eccentricity
(Song, Chui, Zhong, Elsner, & Burns, 2011). These
latter authors have also shown an up to 25%
decrement in density with age, primarily at eccen-
tricities less than 1.68. Curcio’s data, and our
formula, are consistent with the data for their
younger group of observers.

Ganglion cell densities also show sizable individual
differences (Curcio & Allen, 1990). However, perhaps
in contrast to cones, the total number varies
considerably, from 0.71 to 1.54 million cells over a set
of six eyes. This variation seems to be consistent
across the retina. Variation at the fovea cannot be
directly determined because of the displacement of the
RGC.

Beyond these variations between individuals and
with respect to age, there may be additional sources of
variability and measurement error. Thus while a
formula for the average may be useful, it is important
to note that individuals may differ considerably from
these computed values.

Conclusions

We have derived a mathematical formula for the
density of receptive fields of human retinal ganglion
cells as a function of position in the monocular or
binocular visual field. Densities can also be computed
for the receptive fields of the midget subclass of
ganglion cells. Both spacing and position are expressed
in degrees. The formula has several advantages over
existing formulas, which are based on psychophysics,
limited to small eccentricities, confined to specific
meridians, or are inaccurate in the foveal region. Since
the midget retinal ganglion cells provide the primary
limit on human visual spatial resolution across the
visual field, this formula may be useful in the modeling
of human spatial vision.

Keywords: vision, perception, acuity, retinal topogra-
phy, retinal ganglion cells, midget retinal ganglion cell,
eccentricity, peripheral vision, visual resolution
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Appendix 1: Demonstration

As a supplement to this paper we provide an
interactive calculator that returns density and spacing
at arbitrary visual field locations. The demonstration
requires the use of the Wolfram CDF player, available
at https://www.wolfram.com/cdf-player/. An illustra-
tion of the calculator is shown in Figure 19.

Appendix 2: Mathematica tables
and functions

As a supplement we provide aMathematicaNotebook
that contains a number of tables and functions derived
and used in this report. The Notebook is a text file, but is
most readable using the free Wolfram CDF Player
available at https://www.wolfram.com/cdf-player/.

Figure 19. Demonstration of Retinal Topography Calculator.
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Appendix 3: Notation

The following is a table of notation used in this
report.

Appendix 4: Formula parameters
and useful numbers

Appendix 5: Density, spacing, row
spacing, and Nyquist frequency

At least in the fovea, both photoreceptors and
midget ganglion cell receptive fields form an approx-
imately hexagonal lattice. Because we will make use of
these formulas in the text, we review here the
relationships among various metrics of a hexagonal
lattice of points: S(deg)¼ the spacing between adjacent
points, R(deg)¼ the spacing between rows of points,
D(deg!2) ¼ the density of points, and N(c/deg)¼ the
Nyquist frequency of the lattice (the highest frequency
that can be supported by a particular row spacing).
These formulas will allow us to convert among these
metrics. Then
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Appendix 6: Conversion formulas
for retinal dimensions

Conversion of eccentricities in millimeters to
degrees

Eccentricity is defined as distance from a visual
center. Anatomical measurements of the retina often
express eccentricity in millimeters. We would like to
convert these measurements to degrees of visual angle
(deg) relative to the visual axis. Drasdo and Fowler
(1974) used a model eye to compute conversions from
retinal distances in millimeters to degrees. Their
presentation does not, however, provide analytical
expressions of the relevant quantities, so we must derive
them from the figures. In their figure 2 they show a
‘‘curve showing computed relationship between retinal
arc lengths and visual angles from the optic axis.’’ We
have extracted the contour and fit it with a third order
polynomial,

Symbol Definition Unit

r Eccentricity in deg relative to the
visual axis

deg

k Meridian index
d(r, k) Density of cells or receptive fields at

eccentricity r along meridian k
deg!2

s(r, k) Spacing between receptive fields at
eccentricity r along meridian k

deg

c, g, m,
gf, mf

Subscripts to indicate cones, RGC,
mRGC, RGCf, and mRGCf

h(r) Displacement of RGC from RGCf at
eccentricity r

deg

f(r) Fraction of RGC that are midget, as a
function of eccentricity

dimensionless

Dk Offset between optic and visual axis
along the specified meridian

mm

r0 Eccentricity in deg relative to the
optic axis

deg

rmm Eccentricity in mm relative to the
visual axis

mm

r0
mm Eccentricity in mm relative to the

optic axis
mm

N Nyquist frequency of hexagonal
lattice

cycles/deg

S Point spacing of hexagonal lattice deg
R Row spacing of hexagonal lattice deg
D Point density of hexagonal lattice deg!2

Table A1. Notation.

Item Value Unit

Peak cone density 14,804.6 deg!2

Peak RGCf density 33,162.3 deg!2

Peak mRGCf density 29,609.2 deg!2

Minimum on-center mRGCf
(or cone) spacing

0.5299 arcmin

Peak on-center mRGCf (or
cone) Nyquist

65.37 cycles/deg

f(0), midget fraction at zero
eccentricity

1/1.12 ¼ 0.8928

rm, scale factor for decline in
midget fraction with
eccentricity

41.03 deg

Table A2. Formula parameters and useful numbers.
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r0
mmðr

0Þ ¼ 0:268r0þ 0:0003427r02 ! 8:3309*10!6r03

ðA5Þ
In this equation, r0

mm refers to distance in mm, while
r0 is the comparable measurement in degree. The prime
marking indicates a measurement relative to the optic
axis.

We use this equation to translate optical eccentric-
ities in degrees to millimeters. It is plotted in Figure
A1a, along with a linear function with slope 0.268. The
linear approximation is acceptable up to angles of 408.
We also fit to the transpose of the contour data, to
obtain an inverse function,

r0ðr0
mmÞ ¼ 3:556r0

mm þ 0:0599302
mm ! 0:00735803mm

þ 0:000302704mm

ðA6Þ
We use this function, shown in Figure A1b, to

convert optical eccentricities in millimeters to degrees.
Dacey (1993) used a second order polynomial here, but
its fit is poor at very small (0 mm) or large (22 mm)
eccentricities. The linear approximation shown in the
figure has a slope of 1/0.268¼ 3.731.

Conversion of mm2 to deg2

The preceding formulas convert eccentricities (dis-
tances) from millimeters to degrees. We also need to
convert local areas from mm2 to deg2. In their figure 5,
Drasdo and Fowler (1974) show ‘‘variation of retinal
area per solid degree with peripheral angle from the
optic axis.’’ We have fit this with a polynomial

aðr0Þ ¼ 0:0752þ 5:846á 10!5r0! 1:064á 10!5r02

þ 4:116á 10!8r03

ðA7Þ

where a is the ratio of areas mm2/deg2. We have used
this to convert cell densities in mm!2 to deg!2. The
function is illustrated in Figure A2.

Visual versus optical axis

Drasdo and Fowler’s (1974) angular measurements
are relative to the optic axis. Measurements of cone
densities and psychophysical predictions are usually
expressed relative to the visual axis. According to
Charman (1991), quoting Emsley (1952), the optical
axis intersects the retina 1.5 mm nasal and 0.5 mm
superior to the visual axis. In the visual field, the optical
center is thus 1.5 mm temporal of the visual center. To
convert eccentricities from millimeters relative to the
visual axis to degrees relative to the visual axis, we use
the following approximation

rðrmm;mÞ ¼ r0ðrmm ! DmÞ þ r0ðDmÞ ðA8Þ

where m is the index of the meridian, and the

Figure A1. Relation between retinal distance from the optic axis in millimeters and degrees. The linear approximations shown as red

dashed lines have slopes of 0.268 and 3.731, respectively.

Figure A2. Area ratio as a function of angular distance from the

optic axis.
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corresponding offsets D from optic to visual axis in mm
are given by

D¼ 1:5 :5 !1:5 !:5½ ': ðA9Þ
We remind that primed eccentricities are relative to

the optic axis. The relation between visual millimeters
and visual degrees for the four meridians is shown in
Figure A3. Note that without the correction of visual-

optical offset, all curves would be superimposed and
look like Figure A1b above.

In Figure A4 we show the relation between
eccentricities in degrees computed with and without the
correction for the offset. Each curve is a parametric
plot, where the millimeter argument is relative to either
optical or visual axis. The correction is only significant
above 408.

Figure A3. Relation between distance from the visual axis in

millimeters and degrees, with correction for offset between

visual and optic axes.

Figure A4. Eccentricities in degree computed with and without

correction for offset between visual and optic axes.
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