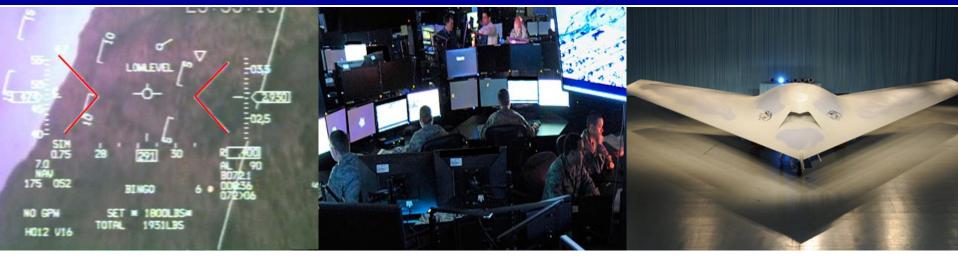


Air Force Research Laboratory

Human-Machine Trust Research

Date: 11 MAR 2015


Joseph B. Lyons, PhD
Technical Advisor
711 HPW/RHXS
Air Force Research Laboratory

Operational Context: What do we work on?

Higher complexity may foster more distrust

Automation may foster complacency (Rovira et al., 2007; Parasuraman & Riley, 1997)

Analysts are resistant to new automated tools

Which has a big cost (Onnasch et al., 2013)

For H-M teaming: trust antecedents > reliability & task elements (Groom & Nass, 2007; Ososky et al. 2013)

What is Trust?

Trust = willingness of individuals to accept vulnerabilities from the actions of others with little ability to monitor their actions (Mayer et al., 1995)

Assumptions:

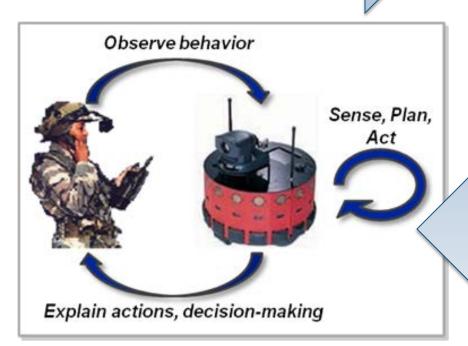

- Trust as a human phenomenon
- •Trust is dynamic (Levine et al., 2006)
 - •Factors that predict initial trust may differ from those that predict trust maintenance (Li et al., 2008)
 - Drivers of initial trust critical to technology acceptance
 - •Performance strong predictor in HRI (Hancock et al., 2011)
 - •Social norms, institutional norms, reputation, perceived benefits/risks (Li et al., 2008)
 - Cognitive Schemas (Merritt, 2013)
 - •Anthropomorphism (Waytz et al., 2014)
- •Trust leads to reliance behavior (Lee & See, 2004; Mayer & Gavin, 2005)

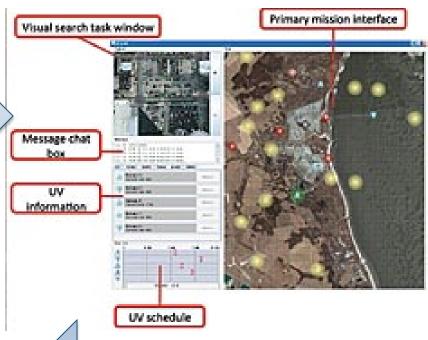
Transparency

Human-Robot Transparency (Lyons, 2013)

Field Study of Automated Ground Collision Avoidance System (GCAS)

- Objective: Understanding antecedents of trust among test pilots, managers, and engineers
- Findings:
 - Trust enablers: Nuisance avoidance, reliability, experience, familiarity, emotional ties to fallen Airmen, data-driven approach
 - Concerns: operational community acceptance/rejection largely unknown
 - Chevrons
 - Rumors; misuse and disuse; pilot culture; carry over from previous systems




Research Examples

Executive Function (EF)

- Protect against complacency?
- Study 1: RESCHU Study
- 2x2 design (Reliability, Workload)
- Data collection May 15

Human-Robot Dialogue

- LM Explaining Robot Actions ERA) technology
- Manipulate social style of dialogue: none, continuous, key decision points, by solicitation
- Data collection phase

Research Examples

Trust and Suspicion

- •Trust, distrust, suspicion are orthogonal (Lyons et al., 2011)
- •Suspicion conceptual model developed (Bobko et al., 2013)
- Anterior Cingulate Cortex may be a physiological marker for suspicion (Hirshfield et al., 2014)

1. <reverse_string+0x28></reverse_string+0x28>	movzbl	-0x1(%rax),%esi	movzbl	(%rcx),%edi
<pre>2. <reverse_string+0x2c></reverse_string+0x2c></pre>	movzbl	(%rbx,%rdx,1),%ecx	movzbl	(%rbx,%rdx,1),%esi
<pre>3. <reverse_string+0x30></reverse_string+0x30></pre>	MOV	%sil,(%rbx,%rdx,1)	mov	%dil,(%rbx,%rdx,1)
4. <reverse_string+0x34></reverse_string+0x34>	add	\$0x1,%rdx	add	\$0x1,%rdx
<pre>5. <reverse_string+0x38></reverse_string+0x38></pre>	MOV	%cl,-0x1(%rax)	MOV	%sil,(%rcx)
6. <reverse_string+0x3b></reverse_string+0x3b>	sub	\$0x1,%rax	sub	\$0x1,%rcx
7. <reverse_string+0x3f></reverse_string+0x3f>	cmp	%rdi,%rdx	cmp	%r8,%rdx
8. <reverse_string+0x42></reverse_string+0x42>	jne	<reverse_string+0x28></reverse_string+0x28>	jne	<pre><reverse_string_neg_off< pre=""></reverse_string_neg_off<></pre>

Trustworthiness of Software Code

- How do coders evaluate trustworthiness of code?
- Individual differences
- Differences due to automation

Thanks!

Joseph Lyons, PhD
Technical Advisor, Human Trust and
Interaction Branch
711 HPW/RHXS
Air Force Research Laboratory
Joseph.Lyons.6@US.AF.MIL
(937) 255-8734

