Go to the NASA Homepage
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
Saccadic brightness decisions do not use a difference model  (2013)
Abstract Header
Eye movements are the most frequent (;3 per second), shortest-latency (;150-250 ms), and biomechanically simplest (1 joint, no inertial complexities) voluntary motor behavior in primates, providing a model sensorimotor decision-making system. Current computational "difference" models of choice behavior utilize a single decision variable encoding the difference between two alternate signals, often implemented as a log-likelihood ratio. Alternatively, the oculomotor literature describes a "race" mechanism, in which two separate decision variables encoding the two alternate signals race against one another independently. These two models make two qualitatively distinct predictions, which can be tested empirically with a two-alternative forced-choice task. Unlike the race model, a decision variable based upon a differencing operation predicts strong mirror image correlations between response time (RT) and the signal strengths of the selected and unselected stimuli (because differencing creates equal and opposite correlations). In a saccadic brightness discrimination task, we observed positive correlations between response rate (1/RT) and the strength of both the selected and unselected stimulus, a simple qualitative prediction of race models that applies to any 2AFC task but which is fundamentally at odds with the most basic prediction of any difference model. Our data are, however, qualitatively consistent with a mechanism in which two competing motor plans co-exist and their two corresponding neural decision variables race to a threshold to drive the saccadic decision.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
brightness, decisions, difference, model, Saccadic, use
References Header
Journal of Vision (2013) 13(8):1, 1-10
Download Header
Adobe PDF Icon  ListonStone_2013.pdf (Download Acrobat Reader Click to download Adobe Acrabat Reader)
  (559KB) (application/pdf)
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Alonso Vera
Last Updated: August 15, 2019