Go to the NASA Homepage
 
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
A Detect and Avoid System in the Context of Multiple-Unmanned Aircraft Systems Operations  (2019)
Abstract Header
NASA's Unmanned Aircraft Systems Integration into the National Airspace System (UAS in the NAS) project examines the technical barriers associated with the operation of UAS in civil airspace. For UAS, the removal of the pilot from onboard the aircraft has eliminated the ability of the ground-based pilot in command (PIC) to use out-the-window visual information to make judgements about a potential threat of a loss of well clear with another aircraft. NASA's Phase 1 research supported the development of a Detect and Avoid (DAA) system that supports the ground-based pilot’s ability to detect potential traffic conflicts and determine a resolution maneuver, but existing display/alerting requirements did not account for multiple UAS control (1:N). Demands for increased scalability of UAS in the NAS operations are expected to create a need for simultaneous control of UAs, and thus, a new DAA HMI design will likely be necessary. Previous research, however, has found performance degradations as the number of vehicles under operator control has increased. The purpose of the current human-in-the-loop (HITL) simulation was to examine the viability of 1:N operations with the Phase 1 DAA alerting and guidance. Sixteen UAS pilots flew three scenarios with varying number of UAs under their control (1:1, 1:3, 1:5). In addition to their supervisory and sensor mission responsibilities, pilots were to utilize the DAA system to remain DAA well clear (DWC) during scripted conflicts of mixed severity. Measured response times, separation performance, mission task data, and subjective feedback were collected to assess how the multi-UAS control configuration impacted pilots’ ability to maintain DAA well clear and perform the mission tasks. Overall, the DAA system proved surprisingly adaptive to multi-UAS control for preventing losses of DAA well clear (LoDWC). The findings suggest that, while multi-UAS operators are able to maintain safe separation (DWC) from other traffic, their ability to efficiently perform missions drastically decreases with their number of controlled vehicles. Pilot feedback indicated that, for this context, the use of automation support tools for completing and managing mission tasks would be appropriate and desired, especially for ensuring efficient use of assets. Finally, human-machine interface (HMI) design considerations for multi-UAS operations are discussed.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
Aircraft, Avoid, Context, Detect, Detect and Avoid, Multiple-Unmanned, Operations, System, Systems, UAS
References Header
In AIAA Aviation 2019 Forum (p. 3315)
Download Header
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Jessica Nowinski
Last Updated: August 15, 2019