Go to the NASA Homepage
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
The impact of a short burst of exercise on sleep inertia  (2021)
Abstract Header
Study objectives-

Determine whether 30 s (s) of exercise performed upon waking can reduce sleep inertia and accelerate an increase in the cortisol awakening response (CAR) and core body temperature (CBT), compared to when sedentary.


Fifteen participants (mean age ± SD, 25.9 ± 5.9 years; six females) completed a counterbalanced, repeated measures, in-laboratory study involving three single experimental nights, each separated by a four-night recovery period. Participants were woken following a 2-h nap (2400–0200) and completed a cycling bout of high-intensity (30-s sprint), low-intensity (30 s at 60% maximum heart rate), or no exercise (sedentary). Sleep inertia testing (eight batteries, 15-min intervals) began immediately following and included measures of subjective sleepiness (Karolinska Sleepiness Scale) and cognitive performance tasks (psychomotor vigilance, serial addition and subtraction, and spatial configuration). CBT was measured continuously via an ingestible telemetric capsule. The CAR was determined using salivary cortisol samples collected at 0, 30 and 45 min post-waking. Data were analysed using mixed effects analysis of variance.


here was no difference in cognitive performance or CBT between conditions. Participants felt less sleepy in the high-intensity condition, followed by the low-intensity and sedentary conditions (p = .003). The CAR was greatest in the high-intensity condition, followed by the sedentary condition, and low-intensity condition (p < 0.001), with no differences between the low-intensity and sedentary conditions.


Those who exercise upon waking should be aware that while they may feel more alert, they may not be performing better than if they had not exercised. Future research should investigate whether exercise of different duration or timing may impact sleep inertia.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
Awakening, body, Core, Cortisol, inertia, response, Sleep, temperature
References Header
Physiology & Behavior, 242:113617. https://doi.org/10.1016/j.physbeh.2021.113617
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Jessica Nowinski
Last Updated: August 15, 2019