Go to the NASA Homepage
 
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
Design and Evaluation of a Corridors-in-the-sky Concept: The Benefits and Feasibility of Adding Highly Structured Routes to a Mixed Equipage Environment  (2012)
Abstract Header
A human-in-the-loop simulation of a Corridors-in-the-sky concept was conducted that focused on investigating the potential benefits and feasibility of the concept with human operators in a realistic environment. In this simulation, the definition of "corridors" was changed from meaning separate corridor airspace with dedicated corridor controllers to highly structured routes with potentially common speeds and avionics equipage. The change in definition allowed the concept to be realizable within the mid-term Next Generation Air Transportation System (NextGen) timeframe and mitigated many of the feasibility issues that were identified in earlier research. Feasibility and benefits were tested through the variance of traffic levels within the test airspace (High and Max). In the High Traffic condition, the radar (R-side) and supporting data (D-side) controllers managed a high level of traffic without aircraft being rerouted out of the congested sectors. In the Max Traffic condition, a traffic flow manager and area supervisors worked together to reroute aircraft out of the congested sectors. Four different procedures were tested with different corridor structures: (1) no specific corridors (No Corridors), (2) only equipped aircraft within corridors (Equipped in Corridors), (3) only unequipped aircraft within corridors (Unequipped in Corridors), and (4) a mix of both equipped and unequipped aircraft within corridors (Mixed in Corridors). Surrounding non-corridor traffic consisted of a 50/50 mix of Data Comm and non-Data Comm equipped aircraft in all conditions. The results of the study indicate that the Equipped in Corridors condition showed the greatest benefits with the highest levels of throughput and the lowest reported workload relative to the other conditions. In contrast, the Unequipped in Corridors condition showed little throughput or workload benefits relative to the No Corridors condition. The results for the Mixed in Corridors condition fell in between the values observed for Equipped in Corridors and No Corridors. Feedback from the participants revealed that the observed reduction in benefits when unequipped aircraft were in the corridors was a result of the workload associated with the communications and monitoring required for the unequipped corridor aircraft as well as the display clutter of their data blocks. In addition, the study showed that the concept was feasible and was well received by the participants. Service for equipage was also shown to be feasible with fewer Data Comm equipped aircraft rerouted than non-Data Comm equipped aircraft.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
Adding, Benefits, Concept, Corridors-in-the-sky, Design, Environment, Equipage, Evaluation, Feasibility, Highly, Mixed, Routes, Structured
References Header
AIAA Guidance, Navigation and Control Conference, 13-16 August 2012, Minneapolis, Minnesota
Download Header
Adobe PDF Icon  Homola_AIAA_GNC_2012.pdf (Download Acrobat Reader Click to download Adobe Acrabat Reader)
  (795KB) (application/pdf)
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Jessica Nowinski
Last Updated: August 15, 2019