Go to the NASA Homepage
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
Development of a route crossing tool for shared airspace environments  (2014)
Abstract Header
In current-day Terminal Radar Approach Control (TRACON) operations, departure and arrival controllers maintain separate and dedicated airspace for their respective traffic flows. Although this practice has obvious safety features, it also leads to inefficiencies; for example, departure aircraft may be routinely capped beneath arrival airspace. With the right decision-support and coordination tools, departures could continue to climb through arrival airspace when sufficient gaps exist. Previous studies of 'shared airspace' have examined pre-arranged coordination procedures, as well as tools that gave feedback to the controllers on where gaps between arrivals were located and whether the departure aircraft could be scheduled to fly through those gaps [1, 2, 3, 4]. Since then, the Route Crossing Tool (RCT) has been developed to allow controllers to assess multiple pre-defined route options at points where the arrivals and departures cross, thereby increasing the possibility of climbing a departure through an arrival gap.

The RCT aids in ensuring lateral separation between departure and arrival aircraft that pass through the same altitude. Since the RCT can be applied tactically, it can enable aircraft to fly through arrival flows even if these aircraft depart outside scheduled times. The RCT makes use of a set of predefined parallel departure routes crossing the arrival flow at equidistant intersecting points on the arrival route. The RCT uses the Estimated Time of Arrival (ETA) of the departure aircraft at each intersecting point to calculate the lateral separation with the neighboring arrivals when it crosses that point; this information is graphically displayed to the controller. Additionally, the RCT incorporates forecast winds in its ETA predictions.

Multiple prototypes of the RCT have been iteratively developed with feedback from Subject Matter Experts (SMEs). This paper presents the final design, the design process, and lessons learned. Initial results from a simulation suggest that the tool was successful in helping controllers to safely climb more aircraft. Controller feedback on the tool was also positive.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
airspace, crossing, Development, environments, route, shared, tool
References Header
Proceedings of the 33rd Digital Avionics System Conference, Colorado Springs, CO: IEEE
Download Header
Adobe PDF Icon  DASC_2014_ReinWeston_et_al.pdf (Download Acrobat Reader Click to download Adobe Acrabat Reader)
  (1102KB) (application/pdf)
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Alonso Vera
Last Updated: August 15, 2019