Go to the NASA Homepage
Search >
Click to Search
Human Systems Integration Division homepageHuman Systems Integration Division homepage Organization pageOrganization page Technical Areas pageTechnical Areas page Outreach and Publications pageOutreach and Publications page Contact pageContact page
Human Systems Integration Division Homepage
Outreach & Publications Sidebar Header
Go to the Outreach & Publications pageGo to the Outreach & Publications page
Go to Awards pageGo to Awards page
Go to News pageGo to News page
Go to Factsheets pageGo to Factsheets page
Go to Multimedia pageGo to Multimedia page
Go to Human Factors 101 pageGo to Human Factors 101 page
What is Human System Integration? Website
Publication Header
Flight deck surface trajectory-based operations (STBO): A four-dimensional trajectory (4DT) simulation  (2017)
Abstract Header
In four-dimensional trajectory (4DT) Surface Trajectory-Based Operations (STBO), aircraft are assigned a conflict-free 4DT which defines an expected location (x,y coordinates) at all times, t, along the taxi route (with altitude, being fixed). These 4DTs afford the highest temporal certainty at all points along the taxi route, and at the departure runway. In the present study, a 4DT flight deck display was presented on the Airport Moving Map (AMM) to support pilot conformance to a 4DT clearance while taxiing under manual control. This pilot-in- the-loop simulation compared the effect of 4DT flight deck display formats on distance from the expected 4DT location, conformance to the displayed tolerance band, eyes-out time, and pilot ratings of safety and workload. In the defined-tolerance display format, a graphical representation of the expected 4DT location, with a distance-based allowable-tolerance band, was depicted on the AMM. Two defined-tolerance band sizes were tested +/-164 ft and +/-405 ft. In the undefined-tolerance display format, the expected 4DT location was displayed graphically on the AMM, with no indicated allowable-tolerance bounds. Each taxi trial included 4DT speed changes (two or five, per trial) and a range of 4DT taxi speeds. Results showed that the larger (+/-405 ft) defined-tolerance band yielded higher conformance levels than the smaller (+/-164 ft) band, with pilots staying within the specified and displayed conformance bounds more in the larger (99.71%) than the smaller defined-tolerance band (93.37%). However, in terms of being able to predict the location of the aircraft compared to the expected 4DT location, the smaller defined-tolerance band resulted in pilots keeping their aircraft closer to the 4DT location, for both average distance and for a given confidence interval (e.g., 95%), than either the larger defined-tolerance band or the undefined-tolerance display format. The larger tolerance band yielded more "eyes out-the- window" time than the smaller tolerance band. Pilots also rated taxing with the larger tolerance band as safer than the smaller tolerance band.
Private Investigators Header
Authors Header
Groups Header
Keywords Header
4DT, displays, flight deck, ops, STBO, surface, taxi
References Header
Proceedings of the 36th Digital Avionics Systems Conference (DASC 2017), St. Petersburg, FL, Sept. 2017
Download Header
Adobe PDF Icon  Bakowski_Hooey_Foyle_DASC17.pdf (Download Acrobat Reader Click to download Adobe Acrabat Reader)
  (449KB) (application/pdf)
Go to the First Gov Homepage
Go to the NASA - National Aeronautics and Space Administration Homepage
Curator: Phil So
NASA Official: Jessica Nowinski
Last Updated: August 15, 2019